Integrating Grammar Instruction and Communicative Language Use Through Grammar Consciousness-Raising Tasks

SANDRA S. FOTOS
Senshu University

Grammar consciousness-raising tasks combine the development of knowledge about problematic L2 grammatical features with the provision for meaning-focused use of the target language. However, for this task type to be pedagogically useful in ESL/EFL classrooms, it must be shown that task performance is as effective as a teacher-fronted grammar lesson in promoting gains in knowledge of the target structure and is comparable to performance of regular communicative tasks in terms of opportunities for communicative language exchange. This article reports an investigation of three grammar consciousness-raising tasks dealing with word order. The results indicate that the tasks successfully promoted both proficiency gains and L2 negotiated interaction in the participants, with negotiation quantity being determined by the combination of task features present rather than by the nature of the task content. Thus, grammar consciousness-raising tasks can be recommended as one way to integrate formal instruction within a communicative framework.

A compelling body of evidence has accumulated recently supporting the position that formal instruction on language properties is related to the subsequent acquisition of those properties (see Ellis, 1991; Long, 1983a, 1988b; Pienemann, 1989). These findings present a dilemma for many teachers who have become committed to the use of communicative approaches to language learning, wherein learners are given a rich variety of comprehensible input, and teacher-fronted grammar instruction is generally omitted. In response to empirical findings which indicate that a return to some type of formal instruction may be necessary after all, several lines of research have recently emerged which are exploring ways to integrate instruction on problematic grammar forms within a communicative framework.
CURRENT RESEARCH INTEGRATING FORMAL INSTRUCTION WITH OPPORTUNITIES FOR MEANING-FOCUSED TARGET LANGUAGE USE

One response has been to investigate whether grammar instruction can be conducted through meaning-focused activities. A recent study by Doughty (1991) compared gains in relative clause usage achieved by learners who read passages which contained the target structure. One group received a presentation of formal grammar rules together with the text, and another group received a meaning-focused treatment in which paraphrases and clarifications of the text content were displayed, with target structures visually highlighted and printed in capital letters. Both treatment groups showed similar significant gains on posttests of the structure compared with a control group, this result providing evidence in support of the role of formal instruction in developing knowledge of grammar features compared with communicative exposure alone. In addition, the meaning-focused treatment group showed a better recall of the content of the reading text than the group exposed to a formal presentation of grammar rules. Doughty considered the format of the meaning-focused treatment to be an example of “focus on form” (see Long, 1988a), referring to content-oriented instruction which also draws learners’ attention in meaningful ways to the use of target structures in context. She suggested that such instruction can lead to improved mastery of language features as well as the provision for meaning-focused use of the target language. The results of this study also gave some confirmation to recent findings by VanPatten (1990), suggesting that learners have difficulty consciously attending to both form and meaning at the same time.

A second line of investigation has been pursued by researchers such as Lightbown and Spada (1990); White (1991); White, Spada, Lightbown, and Ranta (1991). Here the focus is on the favorable learning outcomes resulting from instances of formal, teacher-fronted grammar instruction and corrective feedback delivered within communicatively organized classrooms. In the first study, various communicative classrooms were examined for incidents of teacher-initiated grammar instruction or error correction. It was determined that learners in such classrooms showed greater accuracy in subsequent use of some of the forms than learners from classrooms where there was no focus on form or correction of errors. The other two studies required teachers in different communicative classrooms to present formal instruction and feedback on two grammar points, Wh-questions and adverb position. Again, short-term improved accuracy in the taught grammar points resulted, compared with uninstructed control groups, although long-term gains were not evident for adverb position. These research-
ers suggested that an instructional focus on a grammatical feature enhances language input and is consciousness-raising (Rutherford, 1987; Sharwood Smith, 1981, 1991) in the sense that learners develop knowledge about the feature and tend become more aware of the feature in communicative input afterwards, a process seen as essential for language acquisition (McLaughlin, 1987; Rutherford & Sharwood Smith, 1986; Schmidt, 1990; Sharwood Smith, 1991).

Additional studies (Tomasello & Herron, 1988, 1989) reported greater significant gains in communicative use of target forms resulting from immediate teacher feedback on overgeneralization and translation errors which learners were deliberately permitted to make, in comparison to gains produced by informing students in advance about potential problems. The authors suggested that such a "garden path" technique allows learners to make immediate cognitive comparisons between their own interlanguage and the correct form.

The view that grammar instruction is important in raising learners' conscious awareness of a particular feature has also been proposed in the context of developing the theoretical framework for a task-based approach to the study of grammar (Fotos & Ellis, 1991), an approach which constitutes a third line of research aimed at integrating grammar instruction with the provision of opportunities for meaning-focused use of the target language.

DIFFERENCES BETWEEN GRAMMAR CONSCIOUSNESS-RAISING TASKS AND OTHER TASK-BASED APPROACHES TO GRAMMAR INSTRUCTION

Fotos and Ellis (1991) recommended a task-based approach to grammar instruction using a task type which provides learners with grammar problems to solve interactively. Called a grammar consciousness-raising task, it is communicative and has an L2 grammar problem as the task content. Although the learners focus on the form of the grammar structure, they are also engaged in meaning-focused use of the target language as they solve the grammar problem. They develop grammatical knowledge while they are communicating. It must be noted, however, that a number of other researchers have also recommended a task-based approach to grammar instruction. Some suggest the use of tasks aimed at promoting accurate production of the target feature (Ur, 1988). Others (Dickins & Woods, 1988; Nunan, 1989) emphasize the consciousness-raising function of task performance. The use of tasks which require interpretive comprehension of input containing the correct usage of the target form has been suggested
(Van Patten & Cadierno, 1993). Another proposal (Loschky & Bley-Vroman, 1990) recommends the creation of structure-based communicative tasks in which production of the target structure is essential to complete the task content, which is nongrammatical in nature. Both types of tasks are consciousness-raising because the learners’ attention is focused on the nature of the required target structure. This type of approach is similar to the one employed by Doughty (1991) and is consistent with the aim of manipulating meaningful context to draw learners’ attention to problematic grammatical features.

There are two main differences between the use of such consciousness-raising communicative tasks and the type of grammar consciousness-raising tasks discussed in this article. The first concerns the nature of the task content. Whereas the former task is nongrammatical, but requires either recognition of the target structure or its use in reaching the task solution, the content of the grammar consciousness-raising task is the target structure itself. Second, the grammar consciousness-raising task is not aimed at developing immediate ability to use the target structure but rather attempts to call learner attention to grammatical features, raising their consciousness of them, and thereby facilitating subsequent learner noticing of the features in communicative input.

It should be noted that there are distinct pedagogic advantages in having grammar as the task content. First, grammar problems constitute serious task material, in contrast to the trivial nature of many communicative tasks. This point is particularly important in EFL teaching situations where formal, teacher-fronted grammar instruction characterizes many classrooms and communicative activities may not be regarded as serious language study. Second, when learners share the same L1, it is often possible for them to complete task requirements in that L1, avoiding use of the target language. Having a grammar problem as task content requires learners to use and attend to utterances in the target language in order to solve the task. Another advantage is the ease of assessment of task performance through pre- and posttests on the particular grammar structure.

WHY ARE COMMUNICATIVE LANGUAGE USE AND TASK PERFORMANCE SEEN TO BE IMPORTANT?

At this point, it is useful to review the widely held theoretical assumptions that communicative interaction is fundamental to language acquisition, and that both learner comprehension and production are necessary to produce acquisition. A number of recent studies (reviewed in Pica, 1987) provide evidence in support of the need for learners to
be exposed to meaning-focused use of the target language, as opposed to teacher-fronted explanations of language features. When learners use the target language to communicate with native speakers or each other, they often must ask and answer questions when certain items of discourse are not understood. This type of interaction has been termed negotiated interaction (Long, 1983b) and has been shown to be important in promoting improved learner comprehension of the target language (see Pica, Holliday, Lewis, Berducci, & Newman, 1991, for a recent overview of the role of negotiated interaction in language acquisition). In addition, negotiated interaction often results in adjustment and modification of language output (Pica, 1987). Native speakers modify their output to learners so that it becomes more comprehensible, and learners strive to make their own output increasingly like the target language in order to be understood—a process termed pushed output (Pica, 1987). Swain (1985) has suggested that such comprehensible output is as critical to the language acquisition process as comprehension.

Compared to a teacher-fronted language lesson, the use of tasks and group work has been found to expose learners to more comprehensible input and to require learners to make more adjustments in their own output (Long & Porter, 1985; Pica, 1987). Furthermore, investigation has indicated that the format of the tasks is important in producing opportunities for negotiated interaction. Researchers such as Pica and Doughty (1985) and Long (1989) have classified tasks into different types depending on who holds and who conveys information; the requirements for and precision of information conveyed; and the type and number of task resolutions. A survey of research on the amount of task talk produced by manipulating these variables (Long, 1989) indicated that the greatest and most complex use of the target language resulted when all learners were required to exchange information through the use of information gap tasks (see Doughty & Pica, 1986); when they had to agree on a single task resolution; and when they had an opportunity to plan their use of the target language (see Crookes, 1991, for the importance of planning for complex language production).

THE STUDY

For grammar consciousness-raising tasks to be pedagogically acceptable in communicative classrooms as substitutes for grammar lessons and in traditional, teacher-fronted classrooms as a method of studying grammar while providing essential opportunities for communicative use of the target language, two general empirical results are necessary.
First, it must be shown that task performance is as effective at promoting gains in knowledge of the grammar structure as traditional, teacher-fronted grammar lessons. After all, there is no point in recommending grammar consciousness-raising tasks as communicative alternatives to formal grammar lessons if they fail to produce equally favorable learning outcomes. Second, it must be shown that performance of the grammar task produces amounts of L2 task talk comparable to those produced by performance of regular, meaning-focused communicative tasks because it is through the provision of comprehensible input and the requirement for adjusted output that language acquisition has been suggested to take place (Doughty & Pica, 1986; Long, 1983b; Pica, 1987; Pica et al., 1991).

An initial study on the design and use of a prototype grammar consciousness-raising task (Fotos & Ellis, 1991) suggested that task performance resulted in gains in the grammar structure used as task content comparable to the gains made by a matched group who received a formal, teacher-fronted grammar lesson on the same structure. Performance of the grammar task also produced amounts of negotiations in the target language comparable to those reported in the literature for similar information gap tasks, in which all participants were required to exchange information (Doughty & Pica, 1986). However, the study left open the question of the general application of the results of grammar task performance. The present study builds on the results of the pilot study and addresses new points of investigation: (a) whether the favorable results of the pilot study, which used only one task, were consistent for a number of tasks dealing with different grammatical structures; (b) whether the gains in knowledge produced by performance of different grammar tasks were seen to be durable over time; (c) whether counts of negotiated interaction for different grammar tasks were comparable to negotiation counts produced by similar types of communicative tasks; (d) whether the negotiations made were less mechanical than those reported in the first study, in which negotiations averaged only one word in length; and (e) whether the presence of different combinations of task features produced differences in the quantity of negotiated interactions produced. The following research questions were addressed:

1. How do proficiency gains produced by learners who performed different grammar consciousness-raising tasks compare with the gains achieved by learners who were given traditional, teacher-fronted grammar lessons matched to the content of the grammar tasks?

2. How does the number of L2 negotiations made while performing different grammar consciousness-raising tasks compare with L2

328 TESOL QUARTERLY
negotiations produced by performance of communicative tasks matched for task features and format, but lacking grammatical content?

3. How do variations in task features affect the number of L2 negotiations produced?

METHOD

Subjects and Design

Overview of Research Design

The subjects of this research were 160 Japanese university EFL learners making up three intact classes of first-year non-English majors. There were 53–54 learners per class, almost entirely male, and learner assignment into classes was random. The learners had one required 90-min period per week of oral English with a native-speaker instructor who, in this case, was also the researcher. One class received three teacher-fronted grammar lessons on adverb placement, indirect object placement, and relative clause usage, respectively. The second class performed three grammar tasks dealing with the same grammar structures, and the third class performed three communicative tasks matched to the grammar tasks in terms of length, format, instructions, and task features, but lacking grammatical task content. Assignment into four-member discussion groups for each task treatment was random and resulted in 10–11 grammar task discussion groups and 10–12 communicative task discussion groups per task performance, depending on student absences. Before the research began, all classes were administered a cloze test previously determined to be valid and reliable (Fotos, 1991) in order to investigate whether there were significant differences in integrative English proficiency among the three groups. A one-way ANOVA was performed and did not indicate a significant difference among the test score means ($F(2, 146) = 2.69, p < .05)$.

Treatment Cycles

The three treatments were administered during the weekly 90-min English class and consisted of three cycles of 3 weeks each. During the first week of each cycle, the two task groups performed the tasks, and the grammar lesson group received a formal, teacher-fronted grammar lesson. The contents of the lessons were read to the grammar
lesson group directly from the task material used for the grammar tasks, with all sentences written on the board and erased after the lesson. During task performance, the 10–12 discussion groups of each treatment group were sent to separate rooms and all groups were audiotaped; administration of the grammar lessons was audiotaped as well. Before performance of the grammar tasks and administration of the grammar lessons, the two grammar treatment groups took pretests on the grammar structure. After the tasks/lessons, the two grammar treatment groups took posttests which were identical to the pretests. No discussion of the grammar structure took place before any of the treatments, and no teacher feedback on the tests, grammar lessons, or task performances was given at any subsequent time. The task groups were not permitted to keep their task material, and the grammar lesson group was not allowed to take notes on the grammar presentation. The communicative task group received no instruction on the grammar structure studied by the two grammar treatment groups, nor did they take any of the proficiency tests.

During the second and third weeks of each cycle, all classes received regular instruction and performed normal communicative activities. However, two of the communicative activities had the previously studied grammar structure embedded from three to five times—a short story in the second week and a dictation exercise in the third week. After listening to the story and writing the dictation, the learners were given the texts, which they read as part of the regular lesson and then underlined anything they noticed in the texts. Underlined items were counted and analyzed; the results are presented elsewhere (Fotos, 1993). During the third week of each cycle, the two grammar treatment groups took final tests on the grammar structure. The final tests were identical to the pre- and posttests; the issue of possible practice effects will be addressed in the discussion.

Development of Materials

Selection of Grammar Structures

The pilot study (Fotos & Ellis, 1991) used a grammar consciousness-raising task based on the syntactic feature of indirect object placement. This task was also used in the study presented here, and two additional structures involving word order were selected: adverb placement and relative clause usage. These structures are problematic for Japanese learners of English and have been investigated in previous research: indirect object placement by Mazurkewich (1984) and Tanaka (1987); relative clause placement by Schachter (1974), Gass (1980), Bardovi-Harlig (1987), and Akagawa (1990); and adverb placement by White
The three structures were considered to vary in difficulty according to the number of grammatical rules which had to be learned during task performance, and their presentation in tasks/grammar lessons was sequenced accordingly. Mastery of one main rule for adverb position was presented first (i.e., adverbs cannot be placed after the verb and before the object); mastery of three rules for indirect object placement was presented next (see Fotos & Ellis, 1991, for a discussion of the rules for this grammar point), and mastery of a number of different factors, including the function of the relative pronoun in the sentence and the position of the relative clause in the sentence matrix for relative clause usage, was presented last.

Development of the Proficiency Tests

A major research aim was to examine the significance of gains produced from grammar task performance compared with gains produced through receiving grammar lessons. Therefore, the proficiency tests were seen as the most critical research instrument, from which the tasks and other materials were derived. The body of research on the grammar structures of adverb placement, indirect object placement, and relative clause usage cited above was consulted for measurements of proficiency. In general, the trend has been to increasingly require multiple tests of grammar structure acquisition rather than to rely solely upon grammaticality judgment tests—a test type called into question recently (Ellis, 1991). Accordingly, two-part tests giving a total of 30 points were constructed, using from 5 to 10 examples of the chosen structure. These consisted of a grammaticality judgment section and a sentence production section. In the case of indirect object and adverb placement, the learners were asked to produce correct sentences from scrambled word groups (e.g., Toshi—to school—quickly—ran). To test relative clause usage, the learners were requested to combined two short sentences into one long sentence containing a relative clause (e.g., The cake tastes good. Taka made the cake).

Development of the Tasks

Although the nature of the grammar structure was predicted to be related to proficiency gains, it was not expected that the type of grammar structure selected would change the quantity of negotiated interactions produced during task performance. Rather, four task features shown to influence interaction (Long, 1989) were used in this study: whether the task requires a single solution; whether all participants must exchange information in an information gap exercise; the extent to which use of the target language is planned; and whether partici-
pants must agree on a task solution. The last feature was not investigated separately but was combined with the first feature, a closed solution. This was due to time limitations and also to cultural considerations involving the Japanese preference for consensus and their tendency to avoid conflict and disagreement (Barnlund, 1989).

The task features listed above were varied in both the grammar consciousness-raising tasks performed by the grammar task group and in the matched communicative tasks performed by the communicative task group. Figure 1 presents the distribution of task features across the task.

FIGURE 1
Distribution of Task Features—All Tasks

<table>
<thead>
<tr>
<th>Task 1 (Adverb)</th>
<th>Information Gap</th>
<th>Planned Language</th>
<th>Agreed-Upon Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 2 (Indirect Object)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Task 3 (Relative Clause)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

Because of time constraints connected with the Japanese academic year, it was not possible to pilot any of the new material. However, because the second task on indirect object placement and its grammaticality judgment test had been used successfully in previous research (Fotos & Ellis, 1991), the two other tasks and tests closely followed their format, with a task sheet giving instructions and requiring written rules, and separate task cards for the information gap tasks. (See Appendix C for copies of the two new tasks developed for this study.)

Data Analysis

Analysis of Proficiency

Although the pilot study on which this research is based used students' *t* tests to examine the significance of differences between the pre- post- and final test scores between the two grammar treatment groups, considerations have been raised (Brown, 1990) regarding the risk of obtaining false results of significance when the test is used repeatedly within the same experiment. Consequently, in the present investigation, repeated measures multivariate analysis of variance (MANOVA) procedures were used to examine the significance of differences in test means for all test scores within the two grammar treatment groups, as well between the two groups. In addition, univariate statistics were calculated from the repeated measures MANOVA,
and follow-up statistics were calculated for the significance of differences found in the main effect for tests. These reverse Helmert contrasts have been reported as univariate statistics.

At this point, it should be noted that learner attendance across the tests/tasks was variable and therefore the number of data points in some of the cells of the repeated measures MANOVA analysis were also variable. To adjust for this, following the procedures suggested in Hatch and Lazaraton (1991) and Tabachnick and Fidell (1989), the mean test value was computed for each cell with missing data, and additional data points equal to the mean value were added to each cell until the design was balanced. This resulted in the addition of 145 mean-value data points to the 755 original data points, producing 18 balanced cells—three for each of the two treatment groups for three tasks—containing 50 entries each. However, because 19% of the data points in the repeated-measures MANOVA now consisted of added values, the assumption of equal variance (Hatch & Lazaraton, 1991) was compromised. Therefore, to confirm the results of the repeated measures MANOVA using the full data set, a second MANOVA was performed using a subsample of the data. Here, only those learners who were present for all nine proficiency tests were used, and every other learner was interval sampled until a subsample of 30 learners per cell was obtained. The present report gives the subsample repeated MANOVA results in Appendix A. Details of the full-data MANOVA appear elsewhere (Fotos, 1993).

Analysis of Negotiations

Following the procedures used in the pilot study (Fotos & Ellis, 1991), one-way chi-square tests corrected for continuity were used to examine the significance of differences between separate quantitative counts of L1 and L2 negotiations made by all discussion groups in the grammar task treatment and the communicative task treatment. Again, negotiations were considered to be meaningful utterances or c units (defined in Duff, 1986) of inquiry about previously supplied information and consisted of those categories suggested by Long (1983b) and Doughty and Pica (1986): The categories were defined as follows with the examples taken from the present study: clarification requests, made by the listener when he has not understood and wants new information (e.g., “What is answer?”); confirmation checks, made by the listener when he believes he has understood but wants to be sure, often by requesting previous information to be repeated or expanded (e.g., “Adverbs may occur in front, yes?”); and comprehension checks, made by the speaker to be certain that the listener has understood (e.g., after reading a task card, “You understand?”). Repetitions, requests for
repetitions (e.g., "Once more"), and questions regarding the correctness or incorrectness of task card sentences (e.g., "Do you think correct?") were included in counts of negotiated interaction, as they were in the pilot study. Interrater reliability procedures consisted of sampling every tenth negotiation from the total transcription corpus of 1,036 L2 negotiations until a sample of 100 L2 negotiations was obtained. A second trained researcher then coded these negotiations independently. Interrater agreement was 89% for placement into the negotiation categories discussed above.

Following Duff (1986), a second measure of negotiation quantity was determined by counting the number of L2 words and meaningful word fragments—such as the first half of a word being repeated—contained in each L2 negotiation. This procedure allowed calculation of the total number of L2 words/fragments produced by all discussion groups for each task treatment. Chi-square tests were again used to examine the significance of differences across the three tasks and between the two task groups. In addition, the average number of words per L2 negotiation and the average number of L2 negotiations per min were calculated for each treatment group for each task.

The last measure was important because, in the interests of obtaining maximum negotiation data for analysis, the present study did not control for time by limiting negotiation counts to the first 10 min, as the pilot study did. The alpha level was set at .05, \(p < .05 \).

RESULTS

Proficiency Gains

In this article, proficiency has been defined as gain in grammatical knowledge. A regime of pre-, post-, and final tests was administered to the grammar task group and the grammar lesson group, and the learners present for all three tests in the these two treatment groups were compared on the basis of: (a) between group proficiency differences on the three test scores for each of the three tasks; and (b) within group proficiency differences among the three tests for each task. This analysis was performed by repeated-measures MANOVA procedures using both the full data set consisting of all learners who participated in the treatments, and therefore having unequal cell size (Fotos, 1993), and a subsample data set of matched cell size, consisting of 30 learners from each treatment group present for all three tasks/testing regimes. The total test score means out of a possible total of 30 points for the grammar task group (GmT) and the grammar lesson group (GL) across the three tasks are given in Table 1 for the full sample, and the scores

334 TESOL QUARTERLY
TABLE 1
Mean Test Scores for All Tests, All Tasks

<table>
<thead>
<tr>
<th>Task 1 (Adv.)</th>
<th>Task 2 (Ind. Ob.)</th>
<th>Task 3 (Rel. Clause)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>pre</td>
<td>post</td>
</tr>
<tr>
<td>GmT</td>
<td>17.76</td>
<td>22.90</td>
</tr>
</tbody>
</table>

for the subsample are given in Table A-1 in Appendix A. As mentioned above, the communicative task group did not participate in the testing regime.

Table A-2 in Appendix A presents a summary of the subsample MANOVA statistics for all effects, both between groups and within subjects, involved in the repeated measures procedures. The multivariate statistics include the Hotelling and Roy tests. These were estimated for each of the repeated measures main effects of task and tests for the interaction terms: (a) Groups x Tasks, (b) Tasks x Tests, (c) Groups x Tests, and (d) Groups x Tasks by Tests. Table A-3 in Appendix A presents univariate statistics calculated from the repeated measures MANOVA. These resemble regular ANOVA tables and agree with the multivariate analysis. Orthogonal reverse Helmert contrasts are reported as univariate t statistics, and are given in Table A-4, Appendix A.

The repeated-measures MANOVA analysis presented here confirms the results of the full-data repeated measures MANOVA analysis published elsewhere (Fotos, 1993). There was no significant three-way interaction among test, treatment group, and task, as indicated by the Effect: Group x Task x Test ($p < .334$). Two of the interaction effects lost their significance in the subsample analysis (Group x Test, at $p < .886$; and Group x Task, at $p < .084$). This finding can be suggested to result from the artificial nature of the subsample, wherein the lower test scores of both groups, characteristic of learners who tended to miss lessons, were omitted from the sampling procedure. In addition, the orthogonal reverse Helmert contrasts (Table A-4) indicate that the differences between all pre- and posttests, and all pre- and final tests, were significant, regardless of the treatment group or the task performed. Thus, the results of the full-data repeated-measures analysis are verified by the subsample analysis reported here.

The results of the different analyses can be summarized as follows:

1. Differences between the two treatment groups on all tests

There was no significant three-way interaction among test, treatment group, and task (Table A-2, Appendix A) for the Effect: Group x Task
The two groups' initial proficiency in all grammar structures was similar, and after the treatments, both groups achieved similar immediate significant proficiency gains and maintained these significant gains after 2 weeks. Within the full data set, average total learner pretest/posttest gain scores in both treatment groups was 5.75 points for Task 1, the adverb placement task; 6.8 points for Task 2, the indirect object placement task; and only 3.61 points for Task 3, the difficult relative clause usage task. Within the data subset used for the MANOVA analysis given in this report, the average gain for Task 1 was 5.74 points; 6.39 points for Task 2; and 3.49 points for Task 3. Thus, the gains for the full sample and the subsample were quite similar.

2. Within group proficiency, differences among the three tests for all tasks

Proficiency gains between the pretest and posttest scores for each task and the maintenance of those gains after 2 weeks, as shown by the final test scores, were examined for the two treatment groups. Significant gains were made between all pre- and postscores by both treatment groups for all tasks (Tables A–3 and A–4, Appendix A). Furthermore, the proficiency gains were significantly maintained after a period of 2 weeks by both treatment groups across the three tasks.

Negotiation Quantity

Table 2 presents the negotiation quantities made during performance of the three tasks by the two treatment groups, the grammar task group (GmT) and the communicative task group (CT). Chi-square values are given in Table B–1, Appendix B.

<table>
<thead>
<tr>
<th></th>
<th>GmT</th>
<th>CT</th>
<th>L2 neg.</th>
<th>L1 neg.</th>
<th>Total L2 words</th>
<th>L2 words/neg</th>
<th>L2 neg./min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmT</td>
<td>134</td>
<td>139</td>
<td>83</td>
<td>108</td>
<td>51</td>
<td>260</td>
<td>3.13</td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td>51</td>
<td>31</td>
<td>260</td>
<td>1.91</td>
<td>11.68</td>
</tr>
<tr>
<td>Task 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmT</td>
<td>349</td>
<td>421</td>
<td>293</td>
<td>374</td>
<td>56</td>
<td>907</td>
<td>3.09</td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td>293</td>
<td>374</td>
<td>907</td>
<td>2.18</td>
<td>18.66</td>
</tr>
<tr>
<td>Task 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmT</td>
<td>145</td>
<td>121</td>
<td>86</td>
<td>86</td>
<td>59</td>
<td>254</td>
<td>2.95</td>
</tr>
<tr>
<td>CT</td>
<td></td>
<td></td>
<td>86</td>
<td>86</td>
<td>258</td>
<td>3.00</td>
<td>10.58</td>
</tr>
</tbody>
</table>

*Between-group differences significant at $p < .05$.

TESOL QUARTERLY
Task 1: Adverb Placement

For the first task, which was not an information gap but required planned language and an agreed-upon task solution, there were 11 grammar task groups and 12 communicative task groups, the difference due to absences in the grammar task treatment group. Each group consisted of 4 learners. The average time for task completion was 8.56 min for the grammar task group and 9.24 min for the communicative task group. In comparison, administration of the grammar lesson took 19 min, including time spent writing sentences on the board. The grammar task group produced significantly more L2 words during performance of Task 1 and also produced significantly more negotiations in the LI. The LI negotiations involved discussion of the task directions, terms, and rules. The grammar task group’s L2 negotiations were more than one word longer, and the communicative task group made only two more L2 negotiations per min.

Task 2: Indirect Object Placement

This task was an information gap task, requiring a task solution and lacking only planned language. It was performed by 10 grammar task groups and the 10 communicative task groups. The grammar task group took an average of 23.38 min to perform their task and the communicative task group averaged 20.04 min. Administration of the grammar lesson took 25 min. Significant differences were observed for all frequency counts except for L1 negotiations. The communicative task group made significantly more total negotiations, L2 negotiations, and made at least six L2 negotiations per min more than the grammar task group. These higher negotiation counts were caused by the presence of several unusual lexical items in the sentences of the communicative task, which was about the development of the English alphabet. These terms prompted many one- or two-word requests for repetition and clarification, such as once more and what. Nevertheless, as was seen for Task 1, the grammar task group produced significantly more L2 words during negotiations, and their average number of words per L2 negotiation was nearly one word higher than the figure for the communicative task group.

Task 3: Relative Clause Usage

Task 3, which was an information gap task requiring planned language and lacking a task solution, was performed by 11 grammar task groups and 11 communicative task groups. The grammar task group’s average time for task performance was 9.12 min, and the communica-
tive task group's average time was 8.13 min. Administration of the grammar lesson took 18 min. No significant differences were found between any of the frequency counts for the two task groups except for the L1 negotiations, which were significantly greater for the grammar task group. In addition, the average number of words per L2 negotiation was nearly the same for the two groups, and the communicative task group made only one more L2 negotiation per min.

In summary, it can be seen that Task 1 and 3 promoted comparable counts of L2 negotiations in both of the two task treatment groups. In Task 2, the L2 negotiation counts of the communicative task group were inflated by the presence of unfamiliar lexical items. Nonetheless, the grammar task group produced more total L2 words and more L2 words per negotiation than the communicative task group. For Task 1 and Task 3, the communicative task group made only one or two words more per L2 negotiation than the grammar task group but at least six more L2 negotiations per min during performance of Communicative Task 2, which contained unfamiliar lexical items.

Regarding negotiation quality, task performance by the grammar task group produced an average of 3.06 words per English language negotiation compared to an average of only 1.06 words per L2 negotiation produced during the initial study (Fotos & Ellis, 1991). The greater number of words per L2 negotiation produced more complex language than the single-word utterances observed in the pilot study protocols, as shown in the following portions of a protocol from a grammar task discussion group performing Task 2, the indirect object task which was also used during the first study.

A: (learner reads two sentences) Which do you think correct sentences?
B: I can't understand. Teach me.
A: I don't know. I don't know why those two sentences is good. Do you understand?
C: Probably both sentence are correct. OK?
B: I can understand first sentence, but second sentence don't understand.
 Explain. You must explain.
C: Both sentences are post. Preposition "to" may use. OK?
All members: OK OK.

Another area of interest was whether variations in negotiation quantity were related to different combinations of task features, rather than to task content. Table 3 presents a summary of the total negotiations, L2 negotiations and total L2 words produced per task, with the counts for the two treatment groups combined. No significant differences were found between the total number of negotiations, L2 negotiations and L2 words for Task 1 and Task 3. However, the total number of
TABLE 3
Summary of Negotiations for All Tasks (Both Treatment Groups Combined)

<table>
<thead>
<tr>
<th>Task features present</th>
<th>Total neg.</th>
<th>L2 neg.</th>
<th>Total L2 Words/Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 (planned language + solution)</td>
<td>273</td>
<td>166</td>
<td>466</td>
</tr>
<tr>
<td>Task 2 (information gap + solution)</td>
<td>770*</td>
<td>640*</td>
<td>1725*</td>
</tr>
<tr>
<td>Task 3 (information gap + planned language)</td>
<td>266</td>
<td>172</td>
<td>512</td>
</tr>
</tbody>
</table>

*All between-group differences significant at p < .05.

negotiations, L2 negotiations and L2 words for Task 2 were significantly greater than the total counts produced by either of the other two tasks. Chi-square values are reported in Table B–2, Appendix B.

DISCUSSION

Proficiency Gains

The most important research question motivating this study was whether different grammar consciousness-raising tasks, varying in both the nature of the grammar structures studied and the type of task features present, would consistently produce significant proficiency gains in knowledge of the target grammar structure comparable to the gains produced by traditional, teacher-fronted grammar lessons. No instruction on the grammar point preceded or followed the task treatment, so learner mastery of the grammar structure was gained solely from performance of the task activities.

The results of the repeated-measures MANOVA procedures and the derived univariate statistics give strong support for a positive answer to this critical research question. No significant differences were found to exist across the three tasks/lessons between the test scores of the grammar task group and the grammar lesson group for their initial levels of proficiency, as measured by pretests; their significant gains in proficiency after the grammar treatment, as measured by posttests; and the maintenance of these significant gains after 2 weeks, as measured by final tests. Although the gain scores were not large, ranging from about 6 points for the easier adverb and indirect object tasks to only 3 points for the relative clause task, the gains were uniformly significant across the three grammar structures. Furthermore, these significant gains were consistently maintained after a 2-week period.
However, during the initial study (Fotos & Ellis, 1991), similar task performers from the same university did not maintain significant gains after performance of Task 2, the indirect object placement task. The failure of grammar task performance to promote the same type of durable gains as produced by the grammar lesson was seen as an important consideration limiting its pedagogic usefulness. Three factors in the present study are suggested to have promoted the successful maintenance of proficiency gains by the grammar task group across the three tasks: (a) the sequencing of task performance from easy to difficult: The first task on adverb placement required identification of only one rule and was not an information gap task. Thus, learners were able to become familiar with task performance in a group participation pattern before attempting tasks with multiple rules to master and the requirement for information exchange; (b) the presence of a production section on the proficiency tests, requiring the learners to produce the structures they had studied, this serving as an additional consciousness-raising activity; and (c) the subsequent communicative use of the structures, which were embedded in communicative activities presented during the second and third week after the grammar treatments. It has been suggested (Lightbown, 1991) that repeated communicative exposure to grammar structures presented through formal instruction tends to consolidate learner accuracy, and the results of the present study support this observation. However, it is necessary to ask whether these results could be due to teacher/researcher effects or to practice effects from taking the same test three times. The teacher was also the researcher, and one must consider whether the former role could have been used to produce results desirable to the latter. Yet, while teaching the grammar lessons, it was to the researcher's advantage to present effective instruction, and, as mentioned, the various pretests and posttests were administered to the treatment groups without discussion of or comment on the grammar structure either before or after testing. The issue of practice effects was of greater concern. Inspection of Table 1, which shows the mean test scores of both treatment groups for all tests, reveals that the post-and final test scores for the tasks are mostly the same or lower, or if they are higher, they are only higher by a point/fraction of a point. The lack of a posttest/final test gain suggests that, similar to the initial study, there was no practice effect from taking the same tests repeatedly.

In summary, the knowledge developed through performance of the three different grammar tasks compared favorably with the knowledge gained from formal instruction on the three grammar points. It can therefore be suggested that the positive results of grammar task performance may be widely applicable to a range of grammar structures.
Negotiation Quantity

The second research question of this investigation involved the number of L2 negotiations produced during grammar task performance compared with the number of L2 negotiations produced by performance of regular communicative tasks lacking grammatical content. The results indicate that no significant differences in L2 negotiation counts existed between the two treatment groups for Task 1 and Task 3. The average times for task completion were quite similar for the two groups across the two tasks, and the L2 negotiations per min and average number of words per L2 negotiation were also similar. However, for Task 2, both treatment groups took more than twice the time taken for performance of Task 1 and 3, and, as a result, they produced more than twice as many L2 negotiations and more than three and a half times as many total L2 words per task. Due to the presence of unknown lexical items in the content of the communicative task, the communicative task group made significantly more total negotiations and L2 negotiations than the grammar task group and made at least six L2 negotiations per min more than the grammar task group. Nonetheless, the latter group still produced significantly more total L2 words per task and one more average word per L2 negotiation.

Having multiple measures of negotiation quantity allows comparison between the two treatment groups, which bypasses the problem of the extra negotiations in Communicative Task 2. It can therefore be suggested that grammar task performance promoted negotiation quantities comparable to those produced by communicative task performance, even for Task 2, when the total L2 words produced and the average number of words per L2 negotiation are considered separately. Thus, the second research question can be answered affirmatively.

Of the different measure of negotiation quantity used in this report, it is interesting that the average number of words per L2 negotiation was not subject to much fluctuation. It ranged from a few more than two words per negotiation to a few more than three words, regardless of the task type, the length of time needed for task performance, or the nature of the treatment group. The limited number of L2 negotiations (only 143) analyzed during the initial study were characterized as mechanical because they tended to consist of one-word checks of whether task card sentences were correct. However, the data obtained during the present study were more extensive, consisting of 462 L2 negotiations made by the grammar task group during performance of three different tasks. Analysis of this data suggests that the negotiations made during performance of the three grammar tasks
were not as mechanical as those reported for the first study in the sense that they were consistently more than three words in length. As shown in the portion of the protocol cited above, negotiated interaction often consisted of short sentences rather than the one-word utterances reported previously for Task 2 performance by similar learners from the same institution. Once again it can be suggested that this favorable result was produced by allowing the learners to become familiar with group work and task performance through careful sequencing of tasks. In contrast, the learners in the initial study had no previous experience with either group work or task performance prior to their performance of Task 2, a difficult task requiring a multiway exchange of information and the generation of three grammar rules as a task solution. In addition, the opportunities for planned language provided in Task 1 and Task 3 may have also served to promote more complex language production for these tasks, an important function of planning discussed by Crookes (1991).

Negotiations made during communicative task performance were slightly shorter, about two to three words in length. Such lack of variation across the six tasks raises the possibility that negotiations, in general, may tend to have a characteristic length because of their discourse function, and this is an area for future research.

The final research question concerned the cause of variation in negotiation quantity. It was not expected that the nature of the grammar structure used as the task content for the grammar tasks would be a source of differences in negotiation quantities. Rather, the combination of task features present were predicted to influence negotiation counts. In this study, Task 2, the information gap task requiring a single, agreed-upon solution and lacking only planned language, took the greatest amount of time to perform and significantly promoted the greatest number of negotiations in both treatment groups. The combination of these features promoted more negotiation than the other combinations of features in both the grammar task group and the communicative task group. Thus, it can be suggested that negotiation quantity is determined by the combination of task features present rather than by the specific nature of the task content.

CONCLUSION

The research questions of the present study can be answered in ways which support the use of grammar consciousness-raising tasks as one possible method for the development of knowledge of problematic grammar structures through communicative activities. The three grammar tasks presented here were comparable to formal grammar
lessons in terms of promoting significant proficiency gains in the target structure, and the gains achieved through task performance were found to be durable even after 2 weeks had passed. In addition, performance of the grammar consciousness-raising tasks produced quantities of L2 negotiations comparable to the number of L2 negotiations produced by communicative tasks matched for task features but lacking grammatical content. The average length of the English language negotiations produced was three times longer than in the pilot study (Fotos & Ellis, 1991) and was slightly longer than the average length of negotiations produced by communicative task performance. Thus, task performance led to negotiation that was sufficiently rich to suggest that grammar consciousness-raising tasks may be of general benefit to L2 acquisition, in accordance with the claims of Long’s (1983b) interaction hypothesis. It was also indicated that negotiation quantities were promoted differentially through manipulation of task features, regardless of the nature of the grammar structure which constituted the task content, and that the greatest interaction was produced by the combination of an information gap and the requirement for a single, agreed-upon task solution. Grammar consciousness-raising tasks can therefore be recommended to the field of language teaching as useful pedagogy at a time when many teachers are seeking acceptable ways to bring formal instruction on grammar back into their communicative classrooms, and other teachers are searching for communicative activities which harmonize with the goals of more traditional educational curricula emphasizing the formal study of language properties.

ACKNOWLEDGMENTS

Portions of this article are based on a paper presented at the 26th Annual TESOL Convention, Vancouver, Canada, March, 1992. The investigation was part of the author’s doctoral research. The author thanks Rod Ellis and the anonymous TESOL Quarterly reviewers for their helpful comments on an earlier draft of this report.

THE AUTHOR

Sandra S. Fotos is Associate Professor of English at Senshu University, Kanagawa, Japan. Her research interests include the role of formal instruction on second language acquisition in the EFL setting.

REFERENCES

APPENDIX A

Repeated-Measures MANOVA Tables (Subsample of 30 Learners)

TABLE A-1
Mean Scores for All Tests, All Tasks \((n = 30)\)

<table>
<thead>
<tr>
<th>Group</th>
<th>Task 1 (Adverb)</th>
<th></th>
<th>Task 2 (Ind. Obj.)</th>
<th></th>
<th>Task 3 (Rel. Cl.)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pre</td>
<td>Post</td>
<td>Final</td>
<td>Pre</td>
<td>Post</td>
<td>Final</td>
</tr>
<tr>
<td>GmT</td>
<td>17.63</td>
<td>22.63</td>
<td>24.13</td>
<td>20.12</td>
<td>27.52</td>
<td>27.61</td>
</tr>
</tbody>
</table>

TABLE A-2
Summary of MANOVA Statistics for All Effects Involved in Repeated Measures \((n = 30)\)

<table>
<thead>
<tr>
<th>Effect</th>
<th>Test Name</th>
<th>Value</th>
<th>Approximate F</th>
<th>df</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>Hotellings</td>
<td>.99642</td>
<td>28.39807</td>
<td>2,57</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.49910</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>Hotellings</td>
<td>6.34443</td>
<td>180.81632</td>
<td>2,57</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.86384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group x Task</td>
<td>Hotellings</td>
<td>.09084</td>
<td>2.58900</td>
<td>2,57</td>
<td>.084</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.08328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group x Test</td>
<td>Hotellings</td>
<td>.00425</td>
<td>.12118</td>
<td>2,57</td>
<td>.886</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.00423</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task x Test</td>
<td>Hotellings</td>
<td>.40952</td>
<td>5.63088</td>
<td>4,55</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.29054</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group x Task x Test</td>
<td>Hotellings</td>
<td>.08508</td>
<td>1.16985</td>
<td>4,55</td>
<td>.334</td>
</tr>
<tr>
<td></td>
<td>Roys</td>
<td>.07841</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. p values reported by Pillais and Wilks tests were identical to 3 decimal points to the \(p\) value for Hotellings in each case.

GRAMMAR CONSCIOUSNESS-RAISING TASKS

347
TABLE A–3
Summary of Univariate Statistics From the Repeated-Measures MANOVA (n = 30)

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Cells</td>
<td>1888.73</td>
<td>58</td>
<td>32.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>284602.98</td>
<td>1</td>
<td>284603.98</td>
<td>8739.74</td>
<td>.000</td>
</tr>
<tr>
<td>Group</td>
<td>14.02</td>
<td>1</td>
<td>14.02</td>
<td>.43</td>
<td>.514</td>
</tr>
<tr>
<td>Within Subjects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Within Cells</td>
<td>1763.16</td>
<td>116</td>
<td>15.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task</td>
<td>823.38</td>
<td>2</td>
<td>411.69</td>
<td>27.09</td>
<td>.000</td>
</tr>
<tr>
<td>Group x Task</td>
<td>73.25</td>
<td>2</td>
<td>36.62</td>
<td>2.41</td>
<td>.094</td>
</tr>
<tr>
<td>Within Cells</td>
<td>880.25</td>
<td>116</td>
<td>7.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>3736.13</td>
<td>2</td>
<td>1868.07</td>
<td>246.17</td>
<td>.000</td>
</tr>
<tr>
<td>Group x Test</td>
<td>2.56</td>
<td>2</td>
<td>1.28</td>
<td>.17</td>
<td>.845</td>
</tr>
<tr>
<td>Within Cells</td>
<td>1712.19</td>
<td>232</td>
<td>7.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task x Test</td>
<td>214.90</td>
<td>4</td>
<td>53.72</td>
<td>7.28</td>
<td>.000</td>
</tr>
<tr>
<td>Group x Task x Test</td>
<td>54.47</td>
<td>4</td>
<td>13.62</td>
<td>1.85</td>
<td>.121</td>
</tr>
</tbody>
</table>

TABLE A–4
Reverse Helmert Contrasts for Comparisons Within Main Effect for Tests (n = 30)

<table>
<thead>
<tr>
<th>Contrast</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre versus Post</td>
<td>16.07</td>
<td>.000</td>
</tr>
<tr>
<td>Pre versus Final</td>
<td>15.05</td>
<td>.000</td>
</tr>
</tbody>
</table>
APPENDIX B

Chi-Square Statistics for Negotiation Frequencies

TABLE B–1
Chi-Square Statistics for Table 2, Differences in Negotiation Frequencies—Grammar Task Group Versus Communicative Task Group

<table>
<thead>
<tr>
<th>Type of Negotiations</th>
<th>Total neg.</th>
<th>L2 neg.</th>
<th>L1 neg.</th>
<th>Total L2 words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1</td>
<td>0.0586</td>
<td>3.0157</td>
<td>4.4024*</td>
<td>6.2789*</td>
</tr>
<tr>
<td>Task 2</td>
<td>6.547*</td>
<td>9.595*</td>
<td>0.6214</td>
<td>4.8089*</td>
</tr>
<tr>
<td>Task 3</td>
<td>1.9887</td>
<td>0</td>
<td>5.7829*</td>
<td>0.0176</td>
</tr>
</tbody>
</table>

*Significant at p < .05.

TABLE B–2
Chi-Square Statistics for Table 3, Differences in Negotiation Frequency Totals Between Each Set of Tasks

<table>
<thead>
<tr>
<th>Negotiation Category</th>
<th>Total neg.</th>
<th>L2 neg.</th>
<th>Total L2 words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 & 2</td>
<td>235.8734*</td>
<td>204.2721*</td>
<td>722.3021*</td>
</tr>
<tr>
<td>Task 2 & 3</td>
<td>243.7322*</td>
<td>268.5825*</td>
<td>656.6580</td>
</tr>
<tr>
<td>Task 1 & 3</td>
<td>.0667</td>
<td>.0739</td>
<td>2.070</td>
</tr>
</tbody>
</table>

*Significant at p < .05.
APPENDIX C

Tasks 1 and 3

1. Adverb Placement Task

Directions: Working in your groups, study the following sentences. These sentences contain adverbs, words which describe the verb. Adverbs can occur in several places:

Yesterday he studied English.
We quickly ate lunch.
He studied for the test carefully.

But adverbs cannot occur in one location in the English sentence. In groups, you must find that location. To help you solve this problem, you will ask and answer questions which contain these five adverbs:

yesterday quickly carefully easily often

1. First, decide who will start.
2. Then, that person asks the person to his/her right Question 1, and the person answers it.
3. Then, the person who answered Question 1 asks Question 2 to the person on his/her right.
4. Continue until everyone has asked and answered questions.
5. When people are answering questions, you should think about the location of the adverb. Do you think that the person is using the adverb in the correct location? If not, tell the person where you think the correct location is.
6. When everyone has finished, discuss 4 general rules for adverb placement.
7. When you agree on the rules, write the rules at the bottom of this page.

Question 1: What did you do yesterday?

Question 2: Many people can solve mathematical problems quickly. How quickly can you calculate?

Question 3: Are you the type of person who prepares for examinations carefully?

Question 4: Some people remember what they read easily. Other people easily learn sports. What activities can you easily do?

Question 5: What type of activity do you often like to do? How often do you do this activity?

General Rules for Adverb Placement in English:

1. Adverbs may occur
2. Adverbs may also occur
3. And adverbs may also occur
4. However, adverbs may not be used

(Because this task was not an information gap task, there were no separate task cards.)
2. Relative Clause Task and Task Cards

Today’s task is about making sentences with who, whom, which and that. You will also study questions using who or whom.

Directions: Taking turns, read your task cards. Each task card gives one rule, and correct and incorrect sentences showing the rule. The student who reads the rule and sentences must then make his/her own sentence. The sentence should show the rule. The students should write down all of the rules, and then take turns making sentences for each rule.

Task Cards (one to each group member)

Task Card 1
Rule 1: When the relative clause goes with the subject of the sentence, it should be near the subject, not at the end of the sentence.
Correct: The boy who is five years old is very clever.
Incorrect: The boy is very clever who is five years old.
Now, make your own sentence using this rule.

Task Card 2
Rule 2: Don’t leave unnecessary pronouns in the sentence, and don’t forget to use who, whom or which.
Correct: The boy who likes English speaks well.
Incorrect: The boy who he likes English speaks well. (he is unnecessary)
Correct: I like flowers which bloom in spring.
Incorrect: I like flowers bloom in spring (which has been forgotten)
Now make your own sentence using this rule.

Task Card 3
Rule 3: Don’t use the wrong pronoun. Who and whom are for people, which is for things. That is often used with people or things.
Correct: The dictionary which is on the table is mine.
Incorrect: The dictionary who is on the table is mine.
Correct: The girl that just stood up is my friend.
The book that is on the table is mine.
Now make your own sentence using this rule.

Task Card 4
Rule 4: Questions can begin with Who and end with to or can begin with to whom. Both are correct. But be careful not to use to twice.
Correct: Who did you give the book to? To whom did you give the book?
Incorrect: To whom did you give the book to? (to is used twice)
Now make your own sentence using this rule.