Simple Resistive Circuits

Assessment Problems

AP 3.1

Start from the right hand side of the circuit and make series and parallel combinations of the resistors until one equivalent resistor remains. Begin by combining the 6 Ω resistor and the 10 Ω resistor in series:

\[6 \, \Omega + 10 \, \Omega = 16 \, \Omega \]

Now combine this 16 Ω resistor in parallel with the 64 Ω resistor:

\[16 \, \Omega \parallel 64 \, \Omega = \frac{(16)(64)}{16 + 64} = \frac{1024}{80} = 12.8 \, \Omega \]

This equivalent 12.8 Ω resistor is in series with the 7.2 Ω resistor:

\[12.8 \, \Omega + 7.2 \, \Omega = 20 \, \Omega \]

Finally, this equivalent 20 Ω resistor is in parallel with the 30 Ω resistor:

\[20 \, \Omega \parallel 30 \, \Omega = \frac{(20)(30)}{20 + 30} = \frac{600}{50} = 12 \, \Omega \]

Thus, the simplified circuit is as shown:
With the simplified circuit we can use Ohm’s law to find the voltage across both the current source and the 12 Ω equivalent resistor:

\[v = (12 \, \Omega)(5 \, A) = 60 \, V \]

Now that we know the value of the voltage drop across the current source, we can use the formula \(p = -vi \) to find the power associated with the source:

\[p = -(60 \, V)(5 \, A) = -300 \, W \]

Thus, the source delivers 300 W of power to the circuit.

We now can return to the original circuit, shown in the first figure. In this circuit, \(v = 60 \, V \), as calculated in part (a). This is also the voltage drop across the 30 Ω resistor, so we can use Ohm’s law to calculate the current through this resistor:

\[i_A = \frac{60 \, V}{30 \, \Omega} = 2 \, A \]

Now write a KCL equation at the upper left node to find the current \(i_B \):

\[-5 \, A + i_A + i_B = 0 \quad \text{so} \quad i_B = 5 \, A - i_A = 5 \, A - 2 \, A = 3 \, A \]

Next, write a KVL equation around the outer loop of the circuit, using Ohm’s law to express the voltage drop across the resistors in terms of the current through the resistors:

\[-v + 7.2i_B + 6i_C + 10i_C = 0 \]

So \(16i_C = v - 7.2i_B = 60 \, V - (7.2)(3) = 38.4 \, V \)

Thus \(i_C = \frac{38.4}{16} = 2.4 \, A \)

Now that we have the current through the 10 Ω resistor we can use the formula \(p = Ri^2 \) to find the power:

\[p_{10\Omega} = (10)(2.4)^2 = 57.6 \, W \]

AP 3.2
[a] We can use voltage division to calculate the voltage v_o across the 75 kΩ resistor:

$$v_o(\text{no load}) = \frac{75,000}{75,000 + 25,000}(200 \text{ V}) = 150 \text{ V}$$

[b] When we have a load resistance of 150 kΩ then the voltage v_o is across the parallel combination of the 75 kΩ resistor and the 150 kΩ resistor. First, calculate the equivalent resistance of the parallel combination:

$$75 \text{ kΩ} \parallel 150 \text{ kΩ} = \frac{(75,000)(150,000)}{75,000 + 150,000} = 50,000 \Omega = 50 \text{ kΩ}$$

Now use voltage division to find v_o across this equivalent resistance:

$$v_o = \frac{50,000}{50,000 + 25,000}(200 \text{ V}) = 133.3 \text{ V}$$

[c] If the load terminals are short-circuited, the 75 kΩ resistor is effectively removed from the circuit, leaving only the voltage source and the 25 kΩ resistor. We can calculate the current in the resistor using Ohm's law:

$$i = \frac{200 \text{ V}}{25 \text{ kΩ}} = 8 \text{ mA}$$

Now we can use the formula $p = Ri^2$ to find the power dissipated in the 25 kΩ resistor:

$$p_{25k} = (25,000)(0.008)^2 = 1.6 \text{ W}$$

[d] The power dissipated in the 75 kΩ resistor will be maximum at no load since v_o is maximum. In part (a) we determined that the no-load voltage is 150 V, so be can use the formula $p = v^2/R$ to calculate the power:

$$p_{75k}(\text{max}) = \frac{(150)^2}{75,000} = 0.3 \text{ W}$$

AP 3.3

![Circuit Diagram]

[a] We will write a current division equation for the current throught the 80Ω resistor and use this equation to solve for R:

$$i_{80\Omega} = \frac{R}{R + 40 \Omega + 80 \Omega}(20 \text{ A}) = 4 \text{ A} \quad \text{so} \quad 20R = 4(R + 120)$$

Thus \(16R = 480\) and \(R = \frac{480}{16} = 30 \Omega\)
[b] With $R = 30 \Omega$ we can calculate the current through R using current
division, and then use this current to find the power dissipated by R,
using the formula $p = R i^2$:

$$i_R = \frac{40 + 80}{40 + 80 + 30} \times (20 \text{ A}) = 16 \text{ A} \quad \text{so} \quad p_R = (30)(16)^2 = 7680 \text{ W}$$

[c] Write a KVL equation around the outer loop to solve for the voltage $v,$
and then use the formula $p = -vi$ to calculate the power delivered by the
current source:

$$-v + (60 \Omega)(20 \text{ A}) + (30 \Omega)(16 \text{ A}) = 0 \quad \text{so} \quad v = 1200 + 480 = 1680 \text{ V}$$

Thus, $p_{\text{source}} = -(1680 \text{ V})(20 \text{ A}) = -33,600 \text{ W}$
Thus, the current source generates 33,600 W of power.

AP 3.4

![Circuit Diagram]

[a] First we need to determine the equivalent resistance to the right of the
40 Ω and 70 Ω resistors:

$$R_{\text{eq}} = \frac{20\Omega || 30\Omega || (50\Omega + 10\Omega)}{20 + 60} = 10 \Omega$$

Thus,

Now we can use voltage division to find the voltage v_o:

$$v_o = \frac{40}{40 + 10 + 70} (60 \text{ V}) = 20 \text{ V}$$

[b] The current through the 40 Ω resistor can be found using Ohm’s law:

$$i_{40\Omega} = \frac{v_o}{40} = \frac{20 \text{ V}}{40 \Omega} = 0.5 \text{ A}$$

This current flows from left to right through the 40 Ω resistor. To use
current division, we need to find the equivalent resistance of the two
parallel branches containing the 20 Ω resistor and the 50 Ω and 10 Ω
resistors:

$$20\Omega || (50\Omega + 10\Omega) = \frac{(20)(60)}{20 + 60} = 15 \Omega$$

Now we use current division to find the current in the 30 Ω branch:

$$i_{30\Omega} = \frac{15}{15 + 30} (0.5 \text{ A}) = 0.16667 \text{ A} = 166.67 \text{ mA}$$
We can find the power dissipated by the 50 Ω resistor if we can find the current in this resistor. We can use current division to find this current from the current in the 40 Ω resistor, but first we need to calculate the equivalent resistance of the 20 Ω branch and the 30 Ω branch:

\[20 \Omega \parallel 30 \Omega = \frac{(20)(30)}{20 + 30} = 12 \Omega \]

Current division gives:

\[i_{50\Omega} = \frac{12}{12 + 50 + 10} = 0.08333 \text{ A} \]

Thus, \[p_{50\Omega} = (50)(0.08333)^2 = 0.34722 \text{ W} = 347.22 \text{ mW} \]

AP 3.5 [a]

We can find the current \(i \) using Ohm’s law:

\[i = \frac{1 \text{ V}}{100 \Omega} = 0.01 \text{ A} = 10 \text{ mA} \]

[b]

\[R_m = 50 \Omega \parallel 5.555 \Omega = 5 \Omega \]

We can use the meter resistance to find the current using Ohm’s law:

\[i_{\text{meas}} = \frac{1 \text{ V}}{100 \Omega + 5 \Omega} = 0.009524 = 9.524 \text{ mA} \]

AP 3.6 [a]
Use voltage division to find the voltage v:

$$v = \frac{75,000}{75,000 + 15,000}(60 \text{ V}) = 50 \text{ V}$$

The meter resistance is a series combination of resistances:

$$R_m = 149,950 + 50 = 150,000 \Omega$$

We can use voltage division to find v, but first we must calculate the equivalent resistance of the parallel combination of the 75 kΩ resistor and the voltmeter:

$$75,000 \Omega || 150,000 \Omega = \frac{(75,000)(150,000)}{75,000 + 150,000} = 50 \text{ kΩ}$$

Thus,

$$v_{\text{meas}} = \frac{50,000}{50,000 + 15,000}(60 \text{ V}) = 46.15 \text{ V}$$

AP 3.7 [a] Using the condition for a balanced bridge, the products of the opposite resistors must be equal. Therefore,

$$100R_x = (1000)(150) \quad \text{so} \quad R_x = \frac{(1000)(150)}{100} = 1500 \Omega = 1.5 \text{ kΩ}$$

[b] When the bridge is balanced, there is no current flowing through the meter, so the meter acts like an open circuit. This places the following branches in parallel: The branch with the voltage source, the branch with the series combination R_1 and R_3 and the branch with the series combination of R_2 and R_x. We can find the current in the latter two branches using Ohm’s law:

$$i_{R_1,R_3} = \frac{5 \text{ V}}{100 \Omega + 150 \Omega} = 20 \text{ mA}; \quad i_{R_2,R_x} = \frac{5 \text{ V}}{1000 \Omega + 1500 \Omega} = 2 \text{ mA}$$

We can calculate the power dissipated by each resistor using the formula $p = R i^2$:

$$p_{100\Omega} = (100 \Omega)(0.02 \text{ A})^2 = 40 \text{ mW}$$

$$p_{150\Omega} = (150 \Omega)(0.02 \text{ A})^2 = 60 \text{ mW}$$
Problems

\[P_{1000\Omega} = (1000 \Omega)(0.002 \, \text{A})^2 = 4 \, \text{mW} \]
\[P_{1500\Omega} = (1500 \Omega)(0.002 \, \text{A})^2 = 6 \, \text{mW} \]

Since none of the power dissipation values exceeds 250 mW, the bridge can be left in the balanced state without exceeding the power-dissipating capacity of the resistors.

AP 3.8 Convert the three Y-connected resistors, 20 Ω, 10 Ω, and 5 Ω to three ∆-connected resistors \(R_a, R_b, \) and \(R_c. \) To assist you the figure below has both the Y-connected resistors and the ∆-connected resistors.

\[
R_a = \frac{(5)(10) + (5)(20) + (10)(20)}{20} = 17.5 \, \Omega
\]
\[
R_b = \frac{(5)(10) + (5)(20) + (10)(20)}{10} = 35 \, \Omega
\]
\[
R_c = \frac{(5)(10) + (5)(20) + (10)(20)}{5} = 70 \, \Omega
\]

The circuit with these new ∆-connected resistors is shown below:

From this circuit we see that the 70 Ω resistor is parallel to the 28 Ω resistor:
\[
70 \, \Omega \parallel 28 \, \Omega = \frac{(70)(28)}{70 + 28} = 20 \, \Omega
\]

Also, the 17.5 Ω resistor is parallel to the 105 Ω resistor:
\[
17.5 \, \Omega \parallel 105 \, \Omega = \frac{(17.5)(105)}{17.5 + 105} = 15 \, \Omega
\]
Once the parallel combinations are made, we can see that the equivalent 20 Ω resistor is in series with the equivalent 15 Ω resistor, giving an equivalent resistance of \(20 \Omega + 15 \Omega = 35 \Omega\). Finally, this equivalent 35 Ω resistor is in parallel with the other 35 Ω resistor:

\[
35 \Omega \parallel 35 \Omega = \frac{(35)(35)}{35 + 35} = 17.5 \Omega
\]

Thus, the resistance seen by the 2 A source is 17.5 Ω, and the voltage can be calculated using Ohm’s law:

\[
v = (17.5 \Omega)(2 \text{ A}) = 35 \text{ V}
\]
Problems

P 3.1 **[a]** From Ex. 3-1: \(i_1 = 4 \ A, \ \ i_2 = 8 \ A, \ \ i_s = 12 \ A \)

at node b: \(-12 + 4 + 8 = 0,\) at node d: \(12 - 4 - 8 = 0\)

![Circuit Diagram](image)

\[\begin{align*}
 v_1 &= 4i_s = 48 \ \text{V} \quad v_3 = 3i_2 = 24 \ \text{V} \\
 v_2 &= 18i_1 = 72 \ \text{V} \quad v_4 = 6i_2 = 48 \ \text{V} \\
 &\text{loop abda:} \quad -120 + 48 + 72 = 0, \\
 &\text{loop bcdb:} \quad -72 + 24 + 48 = 0, \\
 &\text{loop abcda:} \quad -120 + 48 + 24 + 48 = 0
\end{align*} \]

P 3.2 **[a]** \(p_{4\Omega} = i_s^24 = (12)^24 = 576 \ \text{W} \quad p_{18\Omega} = (4)^218 = 288 \ \text{W} \)

\(p_{3\Omega} = (8)^23 = 192 \ \text{W} \quad p_{6\Omega} = (8)^26 = 384 \ \text{W} \)

[b] \(p_{120V} \text{(delivered)} = 120i_s = 120(12) = 1440 \ \text{W} \)

[c] \(p_{\text{diss}} = 576 + 288 + 192 + 384 = 1440 \ \text{W} \)

P 3.3 **[a]** The 5 k\(\Omega \) and 7 k\(\Omega \) resistors are in series. The simplified circuit is shown below:

![Circuit Diagram](image)

[b] The 800 \(\Omega \) and 1200 \(\Omega \) resistors are in series, as are the 300 \(\Omega \) and 200 \(\Omega \) resistors. The simplified circuit is shown below:
[c] The 35 Ω, 15 Ω, and 25 Ω resistors are in series, as are the 10 Ω and 40 Ω resistors. The simplified circuit is shown below:

![Circuit Diagram](image)

[d] The 50 Ω and 90 Ω resistors are in series, as are the 80 Ω and 70 Ω resistors. The simplified circuit is shown below:

![Circuit Diagram](image)

P 3.4 [a] The 36 Ω and 18 Ω resistors are in parallel. The simplified circuit is shown below:

![Circuit Diagram](image)

[b] The 200 Ω and 120 Ω resistors are in parallel, as are the 210 Ω and 280 Ω resistors. The simplified circuit is shown below:

![Circuit Diagram](image)

[c] The 100 kΩ, 150 kΩ, and 60 kΩ resistors are in parallel, as are the 75 kΩ and 50 kΩ resistors. The simplified circuit is shown below:

![Circuit Diagram](image)
The 750 Ω and 500 Ω resistors are in parallel, as are the 1.5 kΩ and 3 kΩ resistors. The simplified circuit is shown below:

P 3.5 Always work from the side of the circuit furthest from the source. Remember that the current in all series-connected circuits is the same, and that the voltage drop across all parallel-connected resistors is the same.

[a] Circuit in Fig. P3.3(a):
\[R_{eq} = [(7000 + 5000) \parallel 6000] + 8000 = 12,000 \parallel 6000 + 8000 \]
\[= 4000 + 8000 = 12 \text{ kΩ} \]

Circuit in Fig. P3.3(b):
\[R_{eq} = [500 \parallel (800 + 1200)] + 300 + 200 = (500 \parallel 2000) + 300 + 200 \]
\[= 400 + 300 + 200 = 900 \text{ Ω} \]

Circuit in Fig. P3.3(c):
\[R_{eq} = (35 + 15 + 25) \parallel (10 + 40) = 75 \parallel 50 = 30 \text{ Ω} \]

Circuit in Fig. P3.3(d):
\[R_{eq} = ([70 + 80] \parallel 100] + 50 + 90\parallel 300 = [(150] \parallel 100) + 50 + 90 \parallel 300 \]
\[= (60 + 50 + 90) \parallel 300 = 200 \parallel 300 = 120 \text{ Ω} \]

[b] Note that in every case, the power delivered by the source must equal the power absorbed by the equivalent resistance in the circuit. For the circuit in Fig. P3.3(a):
\[P = \frac{V_s^2}{R_{eq}} = \frac{18^2}{12,000} = 0.027 = 27 \text{ mW} \]
For the circuit in Fig. P3.3(b):

\[
P = \frac{V^2}{R_{eq}} = \frac{27^2}{900} = 0.81 = 810 \text{ mW}
\]

For the circuit in Fig. P3.3(c):

\[
P = \frac{V^2}{R_{eq}} = \frac{90^2}{30} = 270 \text{ W}
\]

For the circuit in Fig. P3.3(d):

\[
P = I_s^2(R_{eq}) = (0.03)^2(120) = 0.108 = 108 \text{ mW}
\]

P 3.6 Always work from the side of the circuit furthest from the source. Remember that the current in all series-connected circuits is the same, and that the voltage drop across all parallel-connected resistors is the same.

[a] Circuit in Fig. P3.4(a):

\[
R_{eq} = (36\||18) + 24 = 12 + 24 = 36 \Omega
\]

Circuit in Fig. P3.4(b):

\[
R_{eq} = 200\||120\||[(210\||280) + 180] = 200\||120\||(120 + 180) = 200\||120\||300 = 60 \Omega
\]

Circuit in Fig. P3.4(c):

\[
R_{eq} = (75 \text{ k})|50 \text{ k}) + (100 \text{ k})|150 \text{ k}|60 \text{ k}) + 90 \text{ k} = 30 \text{ k} + 30 \text{ k} + 90 \text{ k} = 150 \text{ k} \Omega
\]

Circuit in Fig. P3.4(d):

\[
R_{eq} = [(600 + 900)|750|500] + (1500|3000) + 2000 = (1500|750|500) + 1000 + 2000
\]
\[
= 250 + 1000 + 2000 = 3250 = 3.25 \text{ k} \Omega
\]

[b] Note that in every case, the power delivered by the source must equal the power absorbed by the equivalent resistance in the circuit. For the circuit in Fig. P3.4(a):

\[
P = \frac{V^2}{R_{eq}} = \frac{18^2}{36} = 9 \text{ W}
\]

For the circuit in Fig. P3.4(b):

\[
P = I_s^2(R_{eq}) = (0.03)^2(60) = 0.054 = 54 \text{ mW}
\]

For the circuit in Fig. P3.4(c):

\[
P = \frac{V^2}{R_{eq}} = \frac{60^2}{150,000} = 0.024 = 24 \text{ mW}
\]

For the circuit in Fig. P3.4(d):

\[
P = \frac{V^2}{R_{eq}} = \frac{65^2}{3250} = 1.3 \text{ W}
\]
Circuit in Fig. P3.7(a):
\[R_{eq} = \left(\frac{15\parallel60 + 30\parallel45 + 20\parallel50}{50} \right) + 25 + 10 = \frac{(12 + 18 + 20)\parallel50}{50} + 25 + 10 \]
\[= \left(\frac{50\parallel50}{50} \right) + 25 + 10 = 25 + 10 = 60 \Omega \]

Circuit in Fig. P3.7(b) – begin by simplifying the 75 Ω resistor and all resistors to its right:
\[[(18 + 12)\parallel60 + 30]\parallel75 = (20 + 30)\parallel75 = 50\parallel75 = 30 \Omega \]
Now simplify the remainder of the circuit:
\[R_{eq} = \left(\frac{(30 + 20)\parallel50 + (20\parallel60)}{40} \right) = \frac{(50\parallel50) + 15\parallel40}{40} = (25 + 15)\parallel40 \]
\[= 40\parallel40 = 20 \Omega \]

Circuit in Fig. P3.7(c) – begin by simplifying the left and right sides of the circuit:
\[R_{left} = \left(\frac{1900 + 1200}{2000} + 300 \right) = 1200 + 300 = 1500 \Omega \]
\[R_{right} = \left(\frac{500 + 2500}{1000} + 750 \right) = 750 + 750 = 1500 \Omega \]
Now find the equivalent resistance seen by the source:
\[R_{eq} = (R_{left}\parallel R_{right}) + 250 + 3000 = (1500\parallel1500) + 250 + 3000 \]
\[= 750 + 250 + 3000 = 4000 = 4 \text{ k}\Omega \]

Circuit in Fig. P3.7(d):
\[R_{eq} = \left(\frac{(750 + 250)\parallel1000 + 100}{(150 + 600)\parallel500 + 300} \right) \]
\[= \left(\frac{1000\parallel1000}{100} \right) = \frac{100\parallel500}{500} = 300 \Omega \]

Note that in every case, the power delivered by the source must equal the power absorbed by the equivalent resistance in the circuit. For the circuit in Fig. P3.7(a):
\[P = \frac{V_s^2}{R_{eq}} = \frac{30^2}{60} = 15 \text{ W} \]

For the circuit in Fig. P3.7(b):
\[P = I_s^2(R_{eq}) = (0.08)^2(20) = 0.128 = 128 \text{ mW} \]

For the circuit in Fig. P3.7(c):
\[P = \frac{V_s^2}{R_{eq}} = \frac{20^2}{4000} = 0.1 = 100 \text{ mW} \]

For the circuit in Fig. P3.7(d):
\[P = I_s^2(R_{eq}) = (0.05)^2(300) = 0.75 = 750 \text{ mW} \]
Chapter 3. Simple Resistive Circuits

P 3.8

[a] \(R_{ab} = 24 + (90 \parallel 60) + 12 = 24 + 36 + 12 = 72 \, \Omega \)

[b] \(R_{ab} = [(4 \, k + 6 \, k + 2 \, k) \parallel 8 \, k] + 5.2 \, k = (12 \, k \parallel 8 \, k) + 5.2 \, k = 4.8 \, k + 5.2 \, k = 10 \, k \Omega \)

[c] \(R_{ab} = 1200 \parallel (320 + 480) = 1200 \parallel 800 = 288 \, \Omega \)

P 3.9

Write an expression for the resistors in series and parallel from the right side of the circuit to the left. Then simplify the resulting expression from left to right to find the equivalent resistance.

[a] \(R_{ab} = [(26 + 10) \parallel 18 + 6] \parallel 36 = (36 \parallel 18 + 6) \parallel 36 = (12 + 6) \parallel 36 = 18 \parallel 36 = 12 \, \Omega \)

[b] \(R_{ab} = [(12 + 18) \parallel 10 + 15] \parallel 20 + 16 \parallel 30 + 4 + 14 = (4 + 16) \parallel 30 + 4 + 14 = 20 \parallel 30 + 4 + 14 = 12 + 4 + 14 = 30 \, \Omega \)

[c] \(R_{ab} = (500 \parallel 1500 \parallel 750 + 250) \parallel 2000 + 1000 = (250 + 250) \parallel 2000 + 1000 = 500 \parallel 2000 + 1000 = 400 + 1000 = 1400 \, \Omega \)

[d] Note that the wire on the far right of the circuit effectively removes the 60 \, \Omega resistor!

\(R_{ab} = [(30 + 18) \parallel 16 + 28] \parallel 40 + 20 \parallel 24 + 25 + 10] \parallel 50
\)

\(= (48 \parallel 40 + 20) \parallel 24 + 25 + 10] \parallel 50
\)

\(= (12 + 28) \parallel 40 + 20] \parallel 24 + 25 + 10] \parallel 50 = (40 \parallel 40 + 20] \parallel 24 + 25 + 10] \parallel 50
\)

\(= 50 \parallel 2000 + 1000 = 400 + 1000 = 1400 \, \Omega \)

P 3.10

[a] \(R + R = 2R \)

[b] \(R + R + R + \cdots + R = nR \)

[c] \(R + R = 2R = 3000 \quad \text{so} \quad R = 1500 = 1.5 \, k \Omega \)

This is a resistor from Appendix H.

[d] \(nR = 4000; \quad \text{so if} \quad n = 4, \quad R = 1 \, k \Omega \)

This is a resistor from Appendix H.

P 3.11

[a] \(R_{eq} = R \parallel R = \frac{R^2}{2R} = \frac{R}{2} \)

[b] \(R_{eq} = R \parallel R \parallel R \parallel \cdots \parallel R \quad (n \ R \text{’s})
\)

\(= R \parallel \frac{R}{n - 1}
\)

\(= \frac{R^2/(n - 1)}{R + R/(n - 1)} = \frac{R^2}{nR} = \frac{R}{n} \)

[c] \(\frac{R}{2} = 5000 \quad \text{so} \quad R = 10 \, k \Omega \)

This is a resistor from Appendix H.
[d] \(\frac{R}{n} = 4000 \) so \(R = 4000n \)

If \(n = 3 \) then \(r = 4000(3) = 12 \) k\(\Omega \)

This is a resistor from Appendix H. So put three 12k resistors in parallel to get 4k\(\Omega \).

P 3.12

[a] \(v_o = \frac{160(3300)}{4700 + 3300} = 66 \) V

[b] \(i = \frac{160}{8000} = 20 \) mA

\(P_{R_1} = (400 \times 10^{-6})(4.7 \times 10^3) = 1.88 \) W

\(P_{R_2} = (400 \times 10^{-6})(3.3 \times 10^3) = 1.32 \) W

[c] Since \(R_1 \) and \(R_2 \) carry the same current and \(R_1 > R_2 \) to satisfy the voltage requirement, first pick \(R_1 \) to meet the 0.5 W specification

\(i_{R_1} = \frac{160 - 66}{R_1} \), Therefore, \(\left(\frac{94}{R_1} \right)^2 R_1 \leq 0.5 \)

Thus, \(R_1 \geq \frac{94^2}{0.5} \) or \(R_1 \geq 17,672 \) \(\Omega \)

Now use the voltage specification:

\(\frac{R_2}{R_2 + 17672} (160) = 66 \)

Thus, \(R_2 = 12,408 \) \(\Omega \)

P 3.13

4 = \(\frac{20R_2}{R_2 + 40} \) so \(R_2 = 10 \) \(\Omega \)

3 = \(\frac{20R_e}{40 + R_e} \) so \(R_e = \frac{120}{17} \) \(\Omega \)

Thus, \(\frac{120}{17} = \frac{10R_L}{10 + R_L} \) so \(R_L = 24 \) \(\Omega \)

P 3.14

[a] \(v_o = \frac{40R_2}{R_1 + R_2} = 8 \) so \(R_1 = 4R_2 \)

Let \(R_e = R_2 \parallel R_L = \frac{R_2 R_L}{R_2 + R_L} \)

\(v_o = \frac{40R_e}{R_1 + R_e} = 7.5 \) so \(R_1 = 4.33R_e \)

Then, \(4R_2 = 4.33R_e = \frac{4.33(3600R_2)}{3600 + R_2} \)

Thus, \(R_2 = 300 \) \(\Omega \) and \(R_1 = 4(300) = 1200 \) \(\Omega \)
The resistor that must dissipate the most power is R_1, as it has the largest resistance and carries the same current as the parallel combination of R_2 and the load resistor. The power dissipated in R_1 will be maximum when the voltage across R_1 is maximum. This will occur when the voltage divider has a resistive load. Thus,

$$v_{R_1} = 40 - 7.5 = 32.5 \text{ V}$$

$$p_{R_1} = \frac{32.5^2}{1200} = 880.2 \text{ m W}$$

Thus the minimum power rating for all resistors should be 1 W.

P 3.15 Refer to the solution to Problem 3.16. The voltage divider will reach the maximum power it can safely dissipate when the power dissipated in R_1 equals 1 W. Thus,

$$\frac{v_{R_1}^2}{1200} = 1 \quad \text{so} \quad v_{R_1} = 34.64 \text{ V}$$

$$v_o = 40 - 34.64 = 5.36 \text{ V}$$

So,

$$\frac{40R_e}{1200 + R_e} = 5.36 \quad \text{and} \quad R_e = 185.68 \Omega$$

Thus,

$$\frac{(300)R_L}{300 + R_L} = 185.68 \quad \text{and} \quad R_L = 487.26 \Omega$$

The minimum value for R_L from Appendix H is 560 Ω.

P 3.16 $R_{eq} = 10\|$[6 + 5\||(8 + 12)] = 10\||(6 + 5\|20) = 10\||(6 + 4) = 5 \Omega$

$$v_{10A} = v_{10\Omega} = (10 \text{ A})(5 \Omega) = 50 \text{ V}$$

Using voltage division:

$$v_{5\Omega} = \frac{5\||(8 + 12)}{6 + 5\||(8 + 12)}(50) = \frac{4}{6 + 4}(50) = 20 \text{ V}$$

Thus, $p_{5\Omega} = \frac{v_{5\Omega}^2}{5} = \frac{20^2}{5} = 80 \text{ W}$
P 3.17 [a]

\[R_{eq} = (10 + 20) \| [12 + (90\|10)] = 30\|15 = 10 \Omega \]

\[v_{2.4A} = 10(2.4) = 24 \text{ V} \]

\[v_o = v_{20\Omega} = \frac{20}{10 + 20}(24) = 16 \text{ V} \]

\[v_{90\Omega} = \frac{90\|10}{6 + (90\|10)}(24) = \frac{9}{15}(24) = 14.4 \text{ V} \]

\[i_o = \frac{14.4}{90} = 0.16 \text{ A} \]

[b] \[p_{6\Omega} = \frac{(v_{2.4A} - v_{90\Omega})^2}{6} = \frac{(24 - 14.4)^2}{6} = 15.36 \text{ W} \]

[c] \[p_{2.4A} = -(2.4)(24) = -57.6 \text{ W} \]

Thus the power developed by the current source is 57.6 W.

P 3.18 Begin by using KCL at the top node to relate the branch currents to the current supplied by the source. Then use the relationships among the branch currents to express every term in the KCL equation using just \(i_2 \):

\[0.05 = i_1 + i_2 + i_3 + i_4 = 0.6i_2 + i_2 + 2i_2 + 4i_1 = 0.6i_2 + i_2 + 2i_2 + 4(0.6i_2) = 6i_2 \]

Therefore,

\[i_2 = \frac{0.05}{6} = 0.00833 = 8.33 \text{ mA} \]

Find the remaining currents using the value of \(i_2 \):

\[i_1 = 0.6i_2 = 0.6(0.00833) = 0.005 = 5 \text{ mA} \]

\[i_3 = 2i_2 = 2(0.00833) = 0.01667 = 16.67 \text{ mA} \]

\[i_4 = 4i_1 = 4(0.005) = 0.02 = 20 \text{ mA} \]

Since the resistors are in parallel, the same voltage, 25 V, appears across each of them. We know the current and the voltage for every resistor so we can use Ohm’s law to calculate the values of the resistors:

\[R_1 = \frac{25}{i_1} = \frac{25}{0.005} = 5000 = 5 \text{ k}\Omega \]
$R_2 = \frac{25}{i_2} = \frac{25}{0.00833} = 3000 = 3 \text{ kΩ}$

$R_3 = \frac{25}{i_3} = \frac{25}{0.01667} = 1500 = 1.5 \text{ kΩ}$

$R_4 = \frac{25}{i_4} = \frac{25}{0.02} = 1250 = 1.25 \text{ kΩ}$

The resulting circuit is shown below:

P 3.19 \[
\frac{(24)^2}{R_1 + R_2 + R_3} = 80, \quad \text{Therefore, } R_1 + R_2 + R_3 = 7.2 \text{ Ω}
\]

\[
\frac{(R_1 + R_2)24}{(R_1 + R_2 + R_3)} = 12
\]

Therefore, $2(R_1 + R_2) = R_1 + R_2 + R_3$

Thus, $R_1 + R_2 = R_3$; $2R_3 = 7.2$; $R_3 = 3.6 \text{ Ω}$

\[
\frac{R_2(24)}{R_1 + R_2 + R_3} = 5
\]

$4.8R_2 = R_1 + R_2 + 3.6 = 7.2$

Thus, $R_2 = 1.5 \text{ Ω}$; $R_1 = 7.2 - R_2 - R_3 = 2.1 \text{ Ω}$

P 3.20 [a]

$20 \text{ kΩ} + 40 \text{ kΩ} = 60 \text{ kΩ}$

$30 \text{ kΩ}||60 \text{ kΩ} = 20 \text{ kΩ}$

\[
v_{o1} = \frac{20,000}{(10,000 + 20,000)} (180) = 120 \text{ V}
\]

\[
v_o = \frac{40,000}{60,000} (v_{o1}) = 80 \text{ V}
\]
[b]

\[
\begin{align*}
\text{i} &= \frac{180}{40,000} = 4.5 \text{ mA} \\
30,000i &= 135 \text{ V} \\
v_o &= \frac{40,000}{60,000} (135) = 90 \text{ V}
\end{align*}
\]

[c] It removes the loading effect of the second voltage divider on the first voltage divider. Observe that the open circuit voltage of the first divider is

\[v'_{o1} = \frac{30,000}{40,000} (180) = 135 \text{ V}\]

Now note this is the input voltage to the second voltage divider when the current-controlled voltage source is used.

P 3.21

[a] At no load: \(v_o = kv_s = \frac{R_2}{R_1 + R_2} v_s\).

At full load: \(v_o = \alpha v_s = \frac{R_e}{R_1 + R_e} v_s\), where \(R_e = \frac{R_o R_2}{R_o + R_2}\)

Therefore \(k = \frac{R_2}{R_1 + R_2}\) and \(R_1 = \frac{(1 - k)}{k} R_2\)

\[\alpha = \frac{R_e}{R_1 + R_e}\] and \(R_1 = \frac{(1 - \alpha)}{\alpha} R_e\)

Thus \(\frac{(1 - \alpha)}{\alpha} \left[\frac{R_2 R_o}{R_o + R_2} \right] = \frac{(1 - k)}{k} R_2\)

Solving for \(R_2\) yields \(R_2 = \frac{(k - \alpha)}{\alpha(1 - k)} R_o\)

Also, \(R_1 = \frac{(1 - k)}{k} R_2\) \Rightarrow \(R_1 = \frac{(k - \alpha)}{\alpha k} R_o\)

[b] \(R_1 = \left(\frac{0.05}{0.68} \right) R_o = 2.5 \text{ k}\Omega\)

\(R_2 = \left(\frac{0.05}{0.12} \right) R_o = 14.167 \text{ k}\Omega\)
Maximum dissipation in R_2 occurs at no load, therefore,

$$P_{R_2(\text{max})} = \frac{(60)(0.85)^2}{14,167} = 183.6 \text{ mW}$$

Maximum dissipation in R_1 occurs at full load.

$$P_{R_1(\text{max})} = \frac{(60 - 0.80)(60)^2}{2500} = 57.60 \text{ mW}$$

The current in the k^{th} branch is

$$i_k = \frac{v_o G_k}{G_1 + G_2 + \cdots + G_N}$$

Thus,

$$i_5 = \frac{40(0.2)}{2 + 0.2 + 0.125 + 0.1 + 0.05 + 0.025} = 3.2 \text{ A}$$

The equivalent resistance of the 6 kΩ resistor and the resistors to its right is

$$6 \text{ kΩ}(5k + 7k) = 6 \text{ kΩ}12k = 4 \text{ kΩ}$$
Using voltage division,
\[v_{6k} = \frac{4000}{8000 + 4000}(18) = 6 \text{ V} \]

[b] \[v_{5k} = \frac{5000}{5000 + 7000}(6) = 2.5 \text{ V} \]

P 3.24 [a] The equivalent resistance of the 100Ω resistor and the resistors to its right is
\[100\|(80 + 70) = 100\|150 = 60 \Omega \]
Using current division,
\[i_{50} = \frac{(50 + 90 + 60)\|300}{50 + 90 + 60}(0.03) = \frac{120}{200}(0.03) = 0.018 = 18 \text{ mA} \]

[b] \[v_{70} = \frac{(80 + 70)\|100}{80 + 70}(0.018) = \frac{60}{150}(0.018) = 0.0072 = 7.2 \text{ mA} \]

P 3.25 [a] The equivalent resistance of the circuit to the right of, and including, the 50Ω resistor is
\[[(60\|15) + (45\|30) + 20]\|50 = 25 \Omega \]
Thus by voltage division,
\[v_{25} = \frac{25}{25 + 25 + 10}(30) = 12.5 \text{ V} \]

[b] The current in the 25Ω resistor can be found from its voltage using Ohm’s law:
\[i_{25} = \frac{12.5}{25} = 0.5 \text{ A} \]

[c] The current in the 25Ω resistor divides between two branches – one containing 50Ω and one containing (45\|30) + (15\|60) + 20 = 50Ω. Using current division,
\[i_{50} = \frac{50\|50}{50}(i_{25}) = \frac{25}{50}(0.5) = 0.25 \text{ A} \]

[d] The voltage drop across the 50Ω resistor can be found using Ohm’s law:
\[v_{50} = 50i_{50} = 50(0.25) = 12.5 \text{ V} \]

[e] The voltage \(v_{50} \) divides across the equivalent resistance (45\|30)Ω, the equivalent resistance (15\|60)Ω, and the 20Ω resistor. Using voltage division,
\[v_{60} = v_{15\|60} = \frac{15\|60}{(15\|60) + (30\|45) + 20}(12.5) = \frac{12}{12 + 18 + 20}(12.5) = 3 \text{ V} \]
P 3.26 [a] The equivalent resistance to the right of the 36Ω resistor is
\[6 + \frac{18\|(26 + 10)}{36} = 18 \text{Ω} \]
By current division,
\[i_{36} = \frac{36\|18}{36}(0.45) = 0.15 = 150 \text{ mA} \]
[b] Using Ohm’s law,
\[v_{36} = 36i_{36} = 36(0.15) = 5.4 \text{ V} \]
[c] Before using voltage division, find the equivalent resistance of the 18Ω resistor and the resistors to its right:
\[18\|(26 + 10) = 12 \text{Ω} \]
Now use voltage division:
\[v_{18} = \frac{12}{12 + 6}(5.4) = 3.6 \text{ V} \]
[d] \[v_{10} = \frac{10}{10 + 26}(3.6) = 1 \text{ V} \]

P 3.27 [a] Begin by finding the equivalent resistance of the 30Ω resistor and all resistors to its right:
\[((12 + 18)\|10\|15\|20 + 16)\|30 = 12 \text{Ω} \]
Now use voltage division to find the voltage across the 4Ω resistor:
\[v_{4} = \frac{4}{4 + 12 + 14}(6) = 0.8 \text{ V} \]
[b] Use Ohm’s law to find the current in the 4Ω resistor:
\[i_{4} = v_{4}/4 = 0.8/4 = 0.2 \text{ A} \]
[c] Begin by finding the equivalent resistance of all resistors to the right of the 30Ω resistor:
\[((12 + 18)\|10\|15\|20 + 16) = 20 \text{Ω} \]
Now use current division:
\[i_{16} = \frac{30\|20}{20}(0.2) = 0.12 = 120 \text{ mA} \]
[d] Note that the current in the 16Ω resistor divides among four branches – 20Ω, 15Ω, 10Ω, and (12 + 18)Ω:
\[i_{10} = \frac{20\|15\|10\|(12 + 18)}{10}(0.12) = 0.048 = 48 \text{ mA} \]
[e] Use Ohm’s law to find the voltage across the 10Ω resistor:
\[v_{10} = 10i_{10} = 10(0.048) = 0.48 \text{ V} \]
Problems 3-23

[f] \[v_{18} = \frac{18}{12 + 18} (0.48) = 0.288 = 288 \text{ mV} \]

P 3.28 [a] \[v_{6k} = \frac{6}{6 + 2} (18) = 13.5 \text{ V} \]

\[v_{3k} = \frac{3}{3 + 9} (18) = 4.5 \text{ V} \]

\[v_x = v_{6k} - v_{3k} = 13.5 - 4.5 = 9 \text{ V} \]

[b] \[v_{6k} = \frac{6}{8} (V_s) = 0.75V_s \]

\[v_{3k} = \frac{3}{12} (V_s) = 0.25V_s \]

\[v_x = (0.75V_s) - (0.25V_s) = 0.5V_s \]

P 3.29 Use current division to find the current in the branch containing the 10 k and 15 k resistors, from bottom to top

\[i_{10k+15k} = \frac{(10 k + 15 k) || (3 k + 12 k)}{10 k + 15 k} (18) = 6.75 \text{ mA} \]

Use Ohm’s law to find the voltage drop across the 15 k resistor, positive at the top:

\[v_{15k} = -(6.75 \text{ m})(15 k) = -101.25 \text{ V} \]

Find the current in the branch containing the 3 k and 12 k resistors, from bottom to top

\[i_{10k+15k} = \frac{(10 k + 15 k) || (3 k + 12 k)}{3 k + 12 k} (18) = 11.25 \text{ mA} \]

Use Ohm’s law to find the voltage drop across the 12 k resistor, positive at the top:

\[v_{12k} = -(12 k)(11.25 \text{ m}) = -135 \text{ V} \]

\[v_o = v_{15k} - v_{12k} = -101.25 - (-135) = 33.75 \text{ V} \]

P 3.30 The equivalent resistance of the circuit to the right of the 90 \(\Omega \) resistor is

\[R_{eq} = [(150 \| 75) + 40] \| (30 + 60) = 90 \| 90 = 45 \Omega \]
Use voltage division to find the voltage drop between the top and bottom nodes:

\[v_{\text{Req}} = \frac{45}{45 + 90} (3) = 1 \, \text{V} \]

Use voltage division again to find \(v_1 \) from \(v_{\text{Req}} \):

\[v_1 = \frac{150\|75}{150\|75 + 40} (1) = \frac{50}{90} (1) = \frac{5}{9} \, \text{V} \]

Use voltage division one more time to find \(v_2 \) from \(v_{\text{Req}} \):

\[v_2 = \frac{30}{30 + 60} (1) = \frac{1}{3} \, \text{V} \]

P 3.31 Find the equivalent resistance of all the resistors except the 2 Ω:

\[5\Omega\|20\Omega = 4\Omega; \quad 4\Omega + 6\Omega = 10\Omega; \quad 10\|(15 + 12 + 13) = 8\Omega = R_{\text{eq}} \]

Use Ohm’s law to find the current \(i_g \):

\[i_g = \frac{125}{2 + R_{\text{eq}}} = \frac{125}{2 + 8} = 12.5 \, \text{A} \]

Use current division to find the current in the 6 Ω resistor:

\[i_6\Omega = \frac{8}{6 + 4} (12.5) = 10 \, \text{A} \]

Use current division again to find \(i_o \):

\[i_o = \frac{5\|20}{20} i_6\Omega = \frac{5\|20}{20} (10) = 2 \, \text{A} \]

P 3.32 Use current division to find the current in the 8 Ω resistor. Begin by finding the equivalent resistance of the 8 Ω resistor and all resistors to its right:

\[R_{\text{eq}} = ([20\|80] + 4)\|30) + 8 = 20\Omega \]

\[i_8 = \frac{60\|R_{\text{eq}}}{R_{\text{eq}}} (0.25) = \frac{60\|20}{20} (0.25) = 0.1875 = 187.5 \, \text{mA} \]

Use current division to find \(i_1 \) from \(i_8 \):

\[i_1 = \frac{30\|[4 + (80\|20)]}{30} (i_8) = \frac{30\|20}{30} (0.1875) = 0.075 = 75 \, \text{mA} \]
Use current division to find $i_{4\Omega}$ from i_8:

$$i_{4\Omega} = \frac{30\parallel[4 + (80\parallel20)]}{4 + (80\parallel20)}(i_8) = \frac{30\parallel20}{20}(0.1875) = 0.1125 = 112.5 \text{ mA}$$

Finally, use current division to find i_2 from $i_{4\Omega}$:

$$i_2 = \frac{80\parallel20}{20}(i_{4\Omega}) = \frac{80\parallel20}{20}(0.1125) = 0.09 = 90 \text{ mA}$$

P 3.33 The current in the shunt resistor at full-scale deflection is

$$i_A = i_{\text{fullscale}} - 3 \times 10^{-3} \text{ A}.$$ The voltage across R_A at full-scale deflection is always 150 mV; therefore,

$$R_A = \frac{150 \times 10^{-3}}{i_{\text{fullscale}} - 3 \times 10^{-3}} = \frac{150}{1000i_{\text{fullscale}} - 3}$$

[a] $R_A = \frac{150}{5000 - 3} = 30.018 \text{ m}\Omega$

[b] Let R_m be the equivalent ammeter resistance:

$$R_m = \frac{0.15}{5} = 0.03 = 30 \text{ m}\Omega$$

[c] $R_A = \frac{150}{100 - 3} = 1.546 \Omega$

[d] $R_m = \frac{0.15}{0.1} = 1.5 \Omega$

P 3.34

Original meter: $R_e = \frac{50 \times 10^{-3}}{5} = 0.01 \Omega$

Modified meter: $R_e = \frac{(0.02)(0.01)}{0.03} = 0.00667 \Omega$

$\therefore (I_{fs})(0.00667) = 50 \times 10^{-3}$

$\therefore I_{fs} = 7.5 \text{ A}$
P 3.35 At full scale the voltage across the shunt resistor will be 200 mV; therefore the power dissipated will be

\[P_A = \frac{(200 \times 10^{-3})^2}{R_A} \]

Therefore \(R_A \geq \frac{(200 \times 10^{-3})^2}{1.0} = 40 \text{ mΩ} \)

Otherwise the power dissipated in \(R_A \) will exceed its power rating of 1 W

When \(R_A = 40 \text{ mΩ} \), the shunt current will be

\[i_A = \frac{200 \times 10^{-3}}{40 \times 10^{-3}} = 5 \text{ A} \]

The measured current will be \(i_{\text{meas}} = 5 + 0.002 = 5.002 \text{ A} \)

\[\therefore \text{ Full-scale reading for practical purposes is 5 A.} \]

P 3.36 [a] The model of the ammeter is an ideal ammeter in parallel with a resistor whose resistance is given by

\[R_m = \frac{100 \text{ mV}}{2 \text{ mA}} = 50 \text{ Ω}. \]

We can calculate the current through the real meter using current division:

\[i_m = \frac{(25/12)}{50 + (25/12)}(i_{\text{meas}}) = \frac{25}{625}(i_{\text{meas}}) = \frac{1}{25}i_{\text{meas}} \]

[b] At full scale, \(i_{\text{meas}} = 5 \text{ A} \) and \(i_m = 2 \text{ mA} \) so \(5 - 0.002 = 4998 \text{ mA} \) flows through the resistor \(R_A \):

\[R_A = \frac{100 \text{ mV}}{4998 \text{ mA}} = \frac{100}{4998} \Omega \]

\[i_m = \frac{(100/4998)}{50 + (100/4998)}(i_{\text{meas}}) = \frac{1}{2500}(i_{\text{meas}}) \]

[c] Yes

P 3.37 For all full-scale readings the total resistance is

\[R_V + R_{\text{movement}} = \frac{\text{full-scale reading}}{10^{-3}} \]

We can calculate the resistance of the movement as follows:

\[R_{\text{movement}} = \frac{20 \text{ mV}}{1 \text{ mA}} = 20 \Omega \]

Therefore, \(R_V = 1000 \) (full-scale reading) − 20
Problems 3-27

[a] \(R_V = 1000(50) - 20 = 49,980 \Omega \)
[b] \(R_V = 1000(5) - 20 = 4980 \Omega \)
[c] \(R_V = 1000(0.25) - 20 = 230 \Omega \)
[d] \(R_V = 1000(0.025) - 20 = 5 \Omega \)

P 3.38
[a] \(v_{\text{meas}} = (50 \times 10^{-3})(15\|45\|(4980 + 20)) = 0.5612 \ V \)
[b] \(v_{\text{true}} = (50 \times 10^{-3})(15\|45) = 0.5625 \ V \)
\[\% \text{error} = \left(\frac{0.5612}{0.5625} - 1 \right) \times 100 = -0.224\% \]

P 3.39
The measured value is \(60\|20.1 = 15.05618 \Omega \).
\[i_g = \frac{50}{15.05618 + 10} = 1.995526 \ A; \quad i_{\text{meas}} = \frac{60}{80.1}(1.996) = 1.494768 \ A \]
The true value is \(60\|20 = 15 \Omega \).
\[i_g = \frac{50}{15 + 10} = 2 \ A; \quad i_{\text{true}} = \frac{60}{80}(2) = 1.5 \ A \]
\[\% \text{error} = \left(\frac{1.494768}{1.5} - 1 \right) \times 100 = -0.34878\% \approx -0.35\% \]

P 3.40
Begin by using current division to find the actual value of the current \(i_o \):
\[i_{\text{true}} = \frac{15}{15 + 45}(50 \ mA) = 12.5 \ mA \]
\[i_{\text{meas}} = \frac{15}{15 + 45 + 0.1}(50 \ mA) = 12.4792 \ mA \]
\[\% \text{error} = \left(\frac{12.4792}{12.5} - 1 \right) \times 100 = -0.166389\% \approx -0.17\% \]

P 3.41
[a]
\[20 \times 10^3 i_1 + 80 \times 10^3 (i_1 - i_B) = 7.5 \]
\[80 \times 10^3 (i_1 - i_B) = 0.6 + 40i_B(0.2 \times 10^3) \]

\[\therefore \quad 100i_1 - 80i_B = 7.5 \times 10^{-3} \]
\[80i_1 - 88i_B = 0.6 \times 10^{-3} \]

Calculator solution yields \(i_B = 225 \mu A \)

[b] With the insertion of the ammeter the equations become

\[100i_1 - 80i_B = 7.5 \times 10^{-3} \quad \text{(no change)} \]
\[80 \times 10^3 (i_1 - i_B) = 10^3 i_B + 0.6 + 40i_B(200) \]
\[80i_1 - 89i_B = 0.6 \times 10^{-3} \]

Calculator solution yields \(i_B = 216 \mu A \)

[c] \% error = \[\left(\frac{216}{225} - 1 \right) \times 100 = -4\% \]

P 3.42 [a] Since the unknown voltage is greater than either voltmeter’s maximum reading, the only possible way to use the voltmeters would be to connect them in series.

[b] \[\begin{array}{c}
\bullet \\
\text{+} \\
\text{v}_m1 \\
\text{v}_m2 \\
\text{-} \\
\text{v}_m3 \\
\text{v}_m4 \\
\end{array} \]

\[R_{m1} = (300)(900) = 270 \text{ k}\Omega; \quad R_{m2} = (150)(1200) = 180 \text{ k}\Omega \]

\[\therefore \quad R_{m1} + R_{m2} = 450 \text{ k}\Omega \]

\[i_{1 \text{ max}} = \frac{300}{270} \times 10^{-3} = 1.11 \text{ mA}; \quad i_{2 \text{ max}} = \frac{150}{180} \times 10^{-3} = 0.833 \text{ mA} \]

\[\therefore \quad i_{\text{ max}} = 0.833 \text{ mA} \text{ since meters are in series} \]

\[v_{\text{ max}} = (0.833 \times 10^{-3})(270 + 180)10^3 = 375 \text{ V} \]

Thus the meters can be used to measure the voltage.

[c] \[i_m = \frac{320}{450 \times 10^3} = 0.711 \text{ mA} \]

\[v_{m1} = (0.711)(270) = 192 \text{ V}; \quad v_{m2} = (0.711)(180) = 128 \text{ V} \]
Problems 3–29

P 3.43 The current in the series-connected voltmeters is

\[i_m = \frac{205.2}{270,000} = \frac{136.8}{180,000} = 0.76 \text{ mA} \]

\[v_{50 \text{ k}\Omega} = (0.76 \times 10^{-3})(50,000) = 38 \text{ V} \]

\[V_{\text{power supply}} = 205.2 + 136.8 + 38 = 380 \text{ V} \]

P 3.44 \[R_{\text{meter}} = R_m + R_{\text{movement}} = \frac{500 \text{ V}}{1 \text{ mA}} = 1000 \text{ k}\Omega \]

\[v_{\text{meas}} = (50 \text{ k}\Omega \parallel 250 \text{ k}\Omega \parallel 1000 \text{ k}\Omega)(10 \text{ mA}) = (40 \text{ k}\Omega)(10 \text{ mA}) = 400 \text{ V} \]

\[v_{\text{true}} = (50 \text{ k}\Omega \parallel 250 \text{ k}\Omega)(10 \text{ mA}) = (41.67 \text{ k}\Omega)(10 \text{ mA}) = 416.67 \text{ V} \]

\[\% \text{ error} = \left(\frac{400}{416.67} - 1 \right)100 = -4\% \]

P 3.45 [a] \[v_{\text{meter}} = 180 \text{ V} \]

[b] \[R_{\text{meter}} = (100)(200) = 20 \text{ k}\Omega \]

\[20\parallel70 = 15.555556 \text{ k}\Omega \]

\[v_{\text{meter}} = \frac{180}{35.555556} \times 15.555556 = 78.75 \text{ V} \]

[c] \[20\parallel20 = 10 \text{ k}\Omega \]

\[v_{\text{meter}} = \frac{180}{80}(10) = 22.5 \text{ V} \]

[d] \[v_{\text{meter a}} = 180 \text{ V} \]

\[v_{\text{meter b}} + v_{\text{meter c}} = 101.26 \text{ V} \]

No, because of the loading effect.

P 3.46 [a] \[R_1 = (100/2)10^3 = 50 \text{ k}\Omega \]

[b] \[R_2 = (10/2)10^3 = 5 \text{ k}\Omega \]

[c] \[R_3 = (1/2)10^3 = 500 \Omega \]
[b] Let \(i_a \) = actual current in the movement
\(i_d \) = design current in the movement

Then \(\% \) error = \(\left(\frac{i_a}{i_d} - 1 \right) \times 100 \)

For the 100 V scale:
\[
\frac{i_a}{i_d} = \frac{50,000}{50,025} = 0.9995 \quad \% \text{error} = (0.9995 - 1) \times 100 = -0.05\%
\]

For the 10 V scale:
\[
\frac{i_a}{i_d} = \frac{5000}{5025} = 0.995 \quad \% \text{error} = (0.995 - 1.0) \times 100 = -0.4975\%
\]

For the 1 V scale:
\[
\frac{i_a}{i_d} = \frac{500}{525} = 0.9524 \quad \% \text{error} = (0.9524 - 1.0) \times 100 = -4.76\%
\]

P 3.47 From the problem statement we have

\[
\frac{V_s(10)}{10 + R_s} = 50 \quad \text{(1)} \quad V_s \text{ in mV; } R_s \text{ in } \Omega
\]

\[
\frac{V_s(6)}{6 + R_s} = 48.75 \quad \text{(2)}
\]

[a] From Eq (1) \(10 + R_s = 0.2V_s \)

\[\therefore R_s = 0.2V_s - 10\]

Substituting into Eq (2) yields

\[48.75 = \frac{6V_s}{0.2V_s - 4} \quad \therefore V_s = 52 \text{ mV}\]

[b] From Eq (1)

\[
50 = \frac{520}{10 + R_s} \quad \therefore 50R_s = 20
\]

So \(R_s = 400 \, \text{k}\Omega \)

P 3.48 [a] \(R_{\text{movement}} = 50 \, \Omega \)

\[
R_1 + R_{\text{movement}} = \frac{30}{1 \times 10^{-3}} = 30 \, \text{k}\Omega \quad \therefore R_1 = 29,950 \, \Omega
\]

\[
R_2 + R_1 + R_{\text{movement}} = \frac{150}{1 \times 10^{-3}} = 150 \, \text{k}\Omega \quad \therefore R_2 = 120 \, \text{k}\Omega
\]

\[
R_3 + R_2 + R_1 + R_{\text{movement}} = \frac{300}{1 \times 10^{-3}} = 300 \, \text{k}\Omega
\]

\[\therefore R_3 = 150 \, \text{k}\Omega\]
[b]

\[V_1 = (0.96 \text{ m})(150 \text{ k}) = 144 \text{ V} \]

\[i_{\text{move}} = \frac{144}{120 + 29.95 + 0.05} = 0.96 \text{ mA} \]

\[i_1 = \frac{144}{750 \text{ k}} = 0.192 \text{ mA} \]

\[i_2 = i_{\text{move}} + i_1 = 0.96 \text{ m} + 0.192 \text{ m} = 1.152 \text{ mA} \]

\[V_{\text{meas}} = V_x = 144 + 150i_2 = 316.8 \text{ V} \]

[c] \(V_1 = 150 \text{ V}; \quad i_2 = 1 \text{ m} + 0.20 \text{ m} = 1.20 \text{ mA} \)

\[i_1 = \frac{150}{750,000} = 0.20 \text{ mA} \]

\[\therefore V_{\text{meas}} = V_x = 150 + (150 \text{ k})(1.20 \text{ m}) = 330 \text{ V} \]

P 3.49 [a] \(R_{\text{meter}} = 300 \text{ kΩ} + 600 \text{ kΩ} || 200 \text{ kΩ} = 450 \text{ kΩ} \)

\[\frac{450}{360} = 200 \text{ kΩ} \]

\[V_{\text{meter}} = \frac{200}{240}(600) = 500 \text{ V} \]

[b] What is the percent error in the measured voltage?

\[\text{True value} = \frac{360}{400}(600) = 540 \text{ V} \]

\[\% \text{ error} = \left(\frac{500}{540} - 1 \right) 100 = -7.41\% \]
P 3.50 Since the bridge is balanced, we can remove the detector without disturbing
the voltages and currents in the circuit.

\[i_1 = \frac{i_g(R_2 + R_x)}{R_1 + R_2 + R_3 + R_x} = \frac{i_g(R_2 + R_x)}{\sum R} \]

\[i_2 = \frac{i_g(R_1 + R_3)}{R_1 + R_2 + R_3 + R_x} = \frac{i_g(R_1 + R_3)}{\sum R} \]

\[v_3 = R_3 i_1 = v_x = i_2 R_x \]

\[\therefore \frac{R_3 i_g(R_2 + R_x)}{\sum R} = \frac{R_x i_g(R_1 + R_3)}{\sum R} \]

\[\therefore R_3(R_2 + R_x) = R_x(R_1 + R_3) \]

From which \(R_x = \frac{R_2 R_3}{R_1} \)

P 3.51 [a]

The condition for a balanced bridge is that the product of the opposite resistors must be equal:

\[(500)(R_x) = (1000)(750) \quad \text{so} \quad R_x = \frac{(1000)(750)}{500} = 1500 \Omega \]
[b] The source current is the sum of the two branch currents. Each branch current can be determined using Ohm’s law, since the resistors in each branch are in series and the voltage drop across each branch is 24 V:

\[
i_s = \frac{24 \text{ V}}{500 \Omega + 750 \Omega} + \frac{24 \text{ V}}{1000 \Omega + 1500 \Omega} = 28.8 \text{ mA}
\]

[c] We can use Ohm’s law to find the current in each branch:

\[
i_{\text{left}} = \frac{24 \text{ V}}{500 + 750} = 19.2 \text{ mA}
\]

\[
i_{\text{right}} = \frac{24 \text{ V}}{1000 + 1500} = 9.6 \text{ mA}
\]

Now we can use the formula \(p = Ri^2 \) to find the power dissipated by each resistor:

\[
p_{500} = (500)(0.0192)^2 = 184.32 \text{ mW} \quad p_{750} = (750)(0.0192)^2 = 276.18 \text{ mW}
\]

\[
p_{1000} = (1000)(0.0096)^2 = 92.16 \text{ mW} \quad p_{1500} = (1500)(0.0096)^2 = 138.24 \text{ mW}
\]

Thus, the 750 \(\Omega \) resistor absorbs the most power; it absorbs 276.48 mW of power.

[d] From the analysis in part (c), the 1000 \(\Omega \) resistor absorbs the least power; it absorbs 92.16 mW of power.

P 3.52 Note the bridge structure is balanced, that is \(15 \times 5 = 3 \times 25 \), hence there is no current in the 5 k\(\Omega \) resistor. It follows that the equivalent resistance of the circuit is

\[
R_{\text{eq}} = 750 + (15,000 + 3000)||(25,000 + 5000) = 750 + 11,250 = 12 \text{ k\(\Omega \)}
\]

The source current is \(192/12,000 = 16 \text{ mA} \).

The current down through the branch containing the 15 k\(\Omega \) and 3 k\(\Omega \) resistors is

\[
i_{3k} = \frac{11,250}{18,000}(0.016) = 10 \text{ mA}
\]

\[\therefore\] \(p_{3k} = 3000(0.01)^2 = 0.3 \text{ W} \)
P 3.53 Redraw the circuit, replacing the detector branch with a short circuit.

\[6 \, k\Omega \parallel 30 \, k\Omega = 5 \, k\Omega \]

\[12 \, k\Omega \parallel 20 \, k\Omega = 7.5 \, k\Omega \]

\[i_s = \frac{75}{12500} = 6 \, mA \]

\[v_1 = 0.006(5000) = 30 \, V \]

\[v_2 = 0.006(7500) = 45 \, V \]

\[i_1 = \frac{30}{6000} = 5 \, mA \]

\[i_2 = \frac{45}{12000} = 3.75 \, mA \]

\[i_d = i_1 - i_2 = 1.25 \, mA \]

P 3.54 In order that all four decades (1, 10, 100, 1000) that are used to set \(R_3 \) contribute to the balance of the bridge, the ratio \(R_2/R_1 \) should be set to 0.001.

P 3.55 Use the figure below to transform the \(\Delta \) to an equivalent \(Y \):

\[R_1 = \frac{(40)(25)}{40 + 25 + 37.5} = 9.756 \, \Omega \]
Problems 3–35

\[R_2 = \frac{(25)(37.5)}{40 + 25 + 37.5} = 9.1463 \Omega \]

\[R_3 = \frac{(40)(37.5)}{40 + 25 + 37.5} = 14.634 \Omega \]

Replace the \(\Delta \) with its equivalent \(Y \) in the circuit to get the figure below:

Find the equivalent resistance to the right of the 5 \(\Omega \) resistor:

\[(100 + 9.756)\|(125 + 9.1463) + 14.634 = 75 \Omega \]

The equivalent resistance seen by the source is thus 5 + 75 = 80 \(\Omega \). Use Ohm’s law to find the current provided by the source:

\[i_s = \frac{40}{80} = 0.5 \text{ A} \]

Thus, the power associated with the source is

\[P_s = -(40)(0.5) = -20 \text{ W} \]

P 3.56 Use the figure below to transform the \(Y \) to an equivalent \(\Delta \):

\[R_a = \frac{(25)(100) + (25)(40) + (40)(100)}{25} = 7500 \frac{25}{25} = 300 \Omega \]
\[R_b = \frac{(25)(100) + (25)(40) + (40)(100)}{40} = \frac{7500}{40} = 187.5 \, \Omega \]

\[R_c = \frac{(25)(100) + (25)(40) + (40)(100)}{100} = \frac{7500}{100} = 75 \, \Omega \]

Replace the Y with its equivalent \(\Delta \) in the circuit to get the figure below:

Find the equivalent resistance to the right of the 5 \(\Omega \) resistor:

\[300 || [(125 || 187.5) + (37.5 || 75)] = 75 \, \Omega \]

The equivalent resistance seen by the source is thus 5 + 75 = 80 \(\Omega \). Use Ohm’s law to find the current provided by the source:

\[i_s = \frac{40}{80} = 0.5 \, \text{A} \]

Thus, the power associated with the source is

\[P_s = -(40)(0.5) = -20 \, \text{W} \]

P 3.57 Use the figure below to transform the Y to an equivalent \(\Delta \):

\[R_a = \frac{(25)(125) + (25)(37.5) + (37.5)(125)}{37.5} = \frac{8750}{37.5} = 233.33 \, \Omega \]

\[R_b = \frac{(25)(125) + (25)(37.5) + (37.5)(125)}{25} = \frac{8750}{25} = 350 \, \Omega \]
Replace the Y with its equivalent Δ in the circuit to get the figure below:

Find the equivalent resistance to the right of the 5Ω resistor:

\[350\|[(100\|233.33) + (40\|70)] = 75\, \Omega \]

The equivalent resistance seen by the source is thus 5 + 75 = 80Ω. Use Ohm’s law to find the current provided by the source:

\[i_s = \frac{40}{80} = 0.5 \, \text{A} \]

Thus, the power associated with the source is

\[P_s = -(40)(0.5) = -20 \, \text{W} \]

P 3.58 [a] Use the figure below to transform the Y to an equivalent Δ:

\[
R_a = \frac{(25)(30) + (25)(50) + (30)(50)}{30} = \frac{3500}{30} = 116.67 \, \Omega \\
R_b = \frac{(25)(30) + (25)(50) + (30)(50)}{50} = \frac{3500}{50} = 70 \, \Omega \\
R_c = \frac{(25)(30) + (25)(50) + (30)(50)}{25} = \frac{3500}{25} = 140 \, \Omega
\]
Replace the Y with its equivalent ∆ in the circuit to get the figure below:

Find the equivalent resistance to the right of the 13 Ω and 7 Ω resistors:

$$70 \parallel [(50 \parallel 116.67) + (20 \parallel 140)] = 30 \Omega$$

Thus, the equivalent resistance seen from the terminals a-b is:

$$R_{ab} = 13 + 30 + 7 = 50 \Omega$$

Use the figure below to transform the ∆ to an equivalent Y:

$$R_1 = \frac{(50)(20)}{50 + 20 + 30} = 10 \Omega$$

$$R_2 = \frac{(50)(30)}{50 + 20 + 30} = 15 \Omega$$

$$R_3 = \frac{(20)(30)}{50 + 20 + 30} = 6 \Omega$$
Replace the ∆ with its equivalent Y in the circuit to get the figure below:

Find the equivalent resistance to the right of the 13Ω and 7Ω resistors:

\[(50 + 10)∥(25 + 15) + 6 = 30\,Ω\]

Thus, the equivalent resistance seen from the terminals a-b is:

\[R_{ab} = 13 + 30 + 7 = 50\,Ω\]

[c] Convert the delta connection \(R_1—R_2—R_3\) to its equivalent wye.
Convert the wye connection \(R_1—R_3—R_4\) to its equivalent delta.

P 3.59 Begin by transforming the ∆-connected resistors (10Ω, 40Ω, 50Ω) to Y-connected resistors. Both the Y-connected and ∆-connected resistors are shown below to assist in using Eqs. 3.44 – 3.46:

Now use Eqs. 3.44 – 3.46 to calculate the values of the Y-connected resistors:

\[R_1 = \frac{(40)(10)}{10 + 40 + 50} = 4\,Ω; \quad R_2 = \frac{(10)(50)}{10 + 40 + 50} = 5\,Ω; \quad R_3 = \frac{(40)(50)}{10 + 40 + 50} = 20\,Ω\]
The transformed circuit is shown below:

![Circuit Diagram]

The equivalent resistance seen by the 24 V source can be calculated by making series and parallel combinations of the resistors to the right of the 24 V source:

\[R_{eq} = (15 + 5) || (1 + 4) + 20 = 20 || 5 + 20 = 4 + 20 = 24 \, \Omega \]

Therefore, the current \(i \) in the 24 V source is given by

\[i = \frac{24 \, V}{24 \, \Omega} = 1 \, A \]

Use current division to calculate the currents \(i_1 \) and \(i_2 \). Note that the current \(i_1 \) flows in the branch containing the 15 \(\Omega \) and 5 \(\Omega \) series connected resistors, while the current \(i_2 \) flows in the parallel branch that contains the series connection of the 1 \(\Omega \) and 4 \(\Omega \) resistors:

\[i_1 = \frac{4}{15 + 5} (1 \, A) = 0.2 \, A, \quad \text{and} \quad i_2 = 1 \, A - 0.2 \, A = 0.8 \, A \]

Now use KVL and Ohm’s law to calculate \(v_1 \). Note that \(v_1 \) is the sum of the voltage drop across the 4 \(\Omega \) resistor, \(4i_2 \), and the voltage drop across the 20 \(\Omega \) resistor, \(20i \):

\[v_1 = 4i_2 + 20i = 4(0.8 \, A) + 20(1 \, A) = 3.2 + 20 = 23.2 \, V \]

Finally, use KVL and Ohm’s law to calculate \(v_2 \). Note that \(v_2 \) is the sum of the voltage drop across the 5 \(\Omega \) resistor, \(5i_1 \), and the voltage drop across the 20 \(\Omega \) resistor, \(20i \):

\[v_2 = 5i_1 + 20i = 5(0.2 \, A) + 20(1 \, A) = 1 + 20 = 21 \, V \]

P 3.60 [a] Convert the upper delta to a wye.

\[R_1 = \frac{(50)(50)}{200} = 12.5 \, \Omega \]

\[R_2 = \frac{(50)(100)}{200} = 25 \, \Omega \]

\[R_3 = \frac{(100)(50)}{200} = 25 \, \Omega \]
Convert the lower delta to a wye.

\[R_4 = \frac{(60)(80)}{200} = 24 \Omega \]

\[R_5 = \frac{(60)(60)}{200} = 18 \Omega \]

\[R_6 = \frac{(80)(60)}{200} = 24 \Omega \]

Now redraw the circuit using the wye equivalents.

Now
\[R_{ab} = 1.5 + 12.5 + \frac{(120)(80)}{200} + 18 = 14 + 48 + 18 = 80 \Omega \]

When \(v_{ab} = 400 \text{ V} \)

\[i_g = \frac{400}{80} = 5 \text{ A} \]

\[i_{31} = \frac{48}{80}(5) = 3 \text{ A} \]

\[P_{31\Omega} = (31)(3)^2 = 279 \text{ W} \]

P 3.61 [a] After the 20 \(\Omega \)–100 \(\Omega \)–50 \(\Omega \) wye is replaced by its equivalent delta, the circuit reduces to
Now the circuit can be reduced to

\[i = \frac{96}{400} (1000) = 240 \text{ mA} \]

\[i_o = \frac{400}{1000} (240) = 96 \text{ mA} \]

\[[b] \quad i_1 = \frac{80}{400} (240) = 48 \text{ mA} \]

\[[c] \quad \text{Now that } i_o \text{ and } i_1 \text{ are known return to the original circuit} \]

\[v_2 = (50)(0.048) + (600)(0.096) = 60 \text{ V} \]

\[i_2 = \frac{v_2}{100} = \frac{60}{100} = 600 \text{ mA} \]

\[[d] \quad v_g = v_2 + 20(0.6 + 0.048) = 60 + 12.96 = 72.96 \text{ V} \]

\[p_g = -(v_g)(1) = -72.96 \text{ W} \]

Thus the current source delivers 72.96 W.

P 3.62 \[8 + 12 = 20 \Omega \]

\[20 \parallel 60 = 15 \Omega \]

\[15 + 20 = 35 \Omega \]

\[35 \parallel 140 = 28 \Omega \]

\[28 + 22 = 50 \Omega \]

\[50 \parallel 75 = 30 \Omega \]
Problems 3–43

30 + 10 = 40 Ω

\(i_g = \frac{240}{40} = 6 \) A

\(i_o = \frac{(6)(50)}{125} = 2.4 \) A

\(i_{140Ω} = \frac{(6 - 2.4)(35)}{175} = 0.72 \) A

\(p_{140Ω} = (0.72)^2(140) = 72.576 \) W

P 3.63 \([a]\) Replace the 60—120—20 Ω delta with a wye equivalent to get

\[
\begin{align*}
&i_s = \frac{750}{5 + (24 + 36)} \frac{1}{(14 + 6) + 12 + 43} = \frac{750}{75} = 10 \text{ A} \\
&i_1 = \frac{(24 + 36) \frac{1}{(14 + 6)}}{24 + 36} (10) = \frac{15}{60}(10) = 2.5 \text{ A}
\end{align*}
\]

\[b\] \(i_o = 10 - 2.5 = 7.5 \) A

\(v = 36i_1 - 6i_o = 36(2.5) - 6(7.5) = 45 \) V

\[c\] \(i_2 = \frac{v}{60} = 7.5 + \frac{45}{60} = 8.25 \) A

\[d\] \(P_{\text{supplied}} = (750)(10) = 7500 \) W

P 3.64 \[G_a = \frac{1}{R_a} = \frac{R_1}{R_1 R_2 + R_2 R_3 + R_3 R_1} = \frac{1/G_1}{(1/G_1)(1/G_2) + (1/G_2)(1/G_3) + (1/G_3)(1/G_1)} = \frac{G_2 G_3}{G_1 + G_2 + G_3}
\]

Similar manipulations generate the expressions for \(G_b \) and \(G_c \).

P 3.65 \[a\] Subtracting Eq. 3.42 from Eq. 3.43 gives

\(R_1 - R_2 = (R_c R_b - R_c R_a)/(R_a + R_b + R_c) \).

Adding this expression to Eq. 3.41 and solving for \(R_1 \) gives

\(R_1 = R_c R_b/(R_a + R_b + R_c) \).

To find \(R_2 \), subtract Eq. 3.43 from Eq. 3.41 and add this result to Eq. 3.42. To find \(R_3 \), subtract Eq. 3.41 from Eq. 3.42 and add this result to Eq. 3.43.
[b] Using the hint, Eq. 3.43 becomes

\[
R_1 + R_3 = \frac{R_b[(R_2/R_3)R_b + (R_2/R_1)R_b]}{(R_2/R_1)R_b + R_b + (R_2/R_3)R_b} = \frac{R_b(R_1 + R_3)R_2}{(R_1R_2 + R_2R_3 + R_3R_1)}
\]

Solving for \(R_b \) gives \(R_b = (R_1R_2 + R_2R_3 + R_3R_1)/R_2 \). To find \(R_a \): First use Eqs. 3.44–3.46 to obtain the ratios \(R_1/R_3 = (R_c/R_a) \) or \(R_c = (R_1/R_3)R_a \) and \(R_1/R_2 = (R_b/R_a) \) or \(R_b = (R_1/R_2)R_a \). Now use these relationships to eliminate \(R_b \) and \(R_c \) from Eq. 3.42. To find \(R_c \), use Eqs. 3.44–3.46 to obtain the ratios \(R_a = (R_3/R_1)R_c \) and \(R_b = (R_3/R_1)R_c \). Now use the relationships to eliminate \(R_b \) and \(R_a \) from Eq. 3.41.

P 3.66 [a] \(R_{ab} = 2R_1 + \frac{R_2(2R_1 + R_L)}{2R_1 + R_2 + R_L} = R_L \)

Therefore \(2R_1 - R_L + \frac{R_2(2R_1 + R_L)}{2R_1 + R_2 + R_L} = 0 \)

Thus \(R_L^2 = 4R_1^2 + 4R_1R_2 = 4R_1(R_1 + R_2) \)

When \(R_{ab} = R_L \), the current into terminal a of the attenuator will be \(v_i/R_L \).

Using current division, the current in the \(R_L \) branch will be

\[
\frac{v_i}{R_L} \cdot \frac{R_2}{2R_1 + R_2 + R_L}
\]

Therefore \(v_o = \frac{v_i}{R_L} \cdot \frac{R_2}{2R_1 + R_2 + R_L} R_L \)

and \(\frac{v_o}{v_i} = \frac{R_2}{2R_1 + R_2 + R_L} \)

[b] \((300)^2 = 4(R_1 + R_2)R_1 \)

\[22,500 = R_1^2 + R_1R_2\]

\[
\frac{v_o}{v_i} = 0.5 = \frac{R_2}{2R_1 + R_2 + 300}
\]

\[R_1 + 0.5R_2 + 150 = R_2\]

\[0.5R_2 = R_1 + 150\]

\[R_2 = 2R_1 + 300\]

\[22,500 = R_1^2 + R_1(2R_1 + 300) = 3R_1^2 + 300R_1\]

\[R_1^2 + 100R_1 - 7500 = 0\]
Solving,

$$R_1 = 50 \, \Omega$$

$$R_2 = 2(50) + 300 = 400 \, \Omega$$

[c] From Appendix H, choose $R_1 = 47 \, \Omega$ and $R_2 = 390 \, \Omega$. For these values, $R_{ab} \neq R_L$, so the equations given in part (a) cannot be used. Instead

$$R_{ab} = 2R_1 + [R_2|| (2R_1 + R_L)] = 2(47) + 390|| (2(47) + 300)$$

$$= 94 + 390||394 = 290 \, \Omega$$

$$\% \text{ error } = \left(\frac{290}{300} - 1 \right) 100 = -3.33\%$$

Now calculate the ratio of the output voltage to the input voltage. Begin by finding the current through the top left R_1 resistor, called i_a:

$$i_a = \frac{v_i}{R_{ab}}$$

Now use current division to find the current through the R_L resistor, called i_L:

$$i_L = \frac{R_2}{R_2 + 2R_1 + R_L} i_a$$

Therefore, the output voltage, v_o, is equal to $R_L i_L$:

$$v_o = \frac{R_2 R_L v_i}{R_{ab}(R_2 + 2R_1 + R_L)}$$

Thus,

$$\frac{v_o}{v_i} = \frac{R_2 R_L}{R_{ab}(R_2 + 2R_1 + R_L)} = \frac{390 (300)}{290 (390 + 2(47) + 300)} = 0.5146$$

$$\% \text{ error } = \left(\frac{0.5146}{0.5} - 1 \right) 100 = 2.92\%$$

P 3.67 [a] After making the Y-to-Δ transformation, the circuit reduces to

![Y-to-Δ transformation diagram](image-url)
Combining the parallel resistors reduces the circuit to

\[0.75R + \frac{3RR_L}{3R + R_L} = \frac{2.25R^2 + 3.75RR_L}{3R + R_L} \]

Therefore

\[R_{ab} = \frac{3R \left(\frac{2.25R^2 + 3.75RR_L}{3R + R_L} \right)}{3R + \left(\frac{2.25R^2 + 3.75RR_L}{3R + R_L} \right)} = \frac{3R(3R + 5R_L)}{15R + 9R_L} \]

If \(R = R_L \), we have

\[R_{ab} = \frac{3R_L(8R_L)}{24R_L} = R_L \]

Therefore

\[R_{ab} = R_L \]

[b] When \(R = R_L \), the circuit reduces to

\[i_o = \frac{i_i(3R_L)}{4.5R_L} = \frac{1}{1.5}i_i = \frac{1}{1.5} \frac{v_i}{R_L} \]

\[v_o = 0.75R_L i_o = \frac{1}{2} v_i \]

Therefore

\[\frac{v_o}{v_i} = 0.5 \]

P 3.68 [a] 3.5(3R - R_L) = 3R + R_L

\[10.5R - 1050 = 3R + 300 \]

\[7.5R = 1350, \quad R = 180 \Omega \]

\[R_2 = \frac{2(180)(300)^2}{3(180)^2 - (300)^2} = 4500 \Omega \]
Problems

[b]

\[v_o = \frac{v_i}{3.5} = \frac{42}{3.5} = 12 \text{ V} \]

\[i_o = \frac{12}{300} = 40 \text{ mA} \]

\[i_1 = \frac{42 - 12}{4500} = \frac{30}{4500} = 6.67 \text{ mA} \]

\[i_g = \frac{42}{300} = 140 \text{ mA} \]

\[i_2 = 140 - 6.67 = 133.33 \text{ mA} \]

\[i_3 = 40 - 6.67 = 33.33 \text{ mA} \]

\[i_4 = 133.33 - 33.33 = 100 \text{ mA} \]

\[p_{4500 \ top} = (6.67 \times 10^{-3})^2(4500) = 0.2 \text{ W} \]

\[p_{180 \ left} = (133.33 \times 10^{-3})^2(180) = 3.2 \text{ W} \]

\[p_{180 \ right} = (33.33 \times 10^{-3})^2(180) = 0.2 \text{ W} \]

\[p_{180 \ vertical} = (100 \times 10^{-3})^2(180) = 0.48 \text{ W} \]

\[p_{300 \ load} = (40 \times 10^{-3})^2(300) = 0.48 \text{ W} \]

The 180 Ω resistor carrying \(i_2 \)

[c] \(p_{180 \ left} = 3.2 \text{ W} \)

[d] Two resistors dissipate minimum power – the 4500 Ω resistor and the 180 Ω resistor carrying \(i_3 \).

[e] They both dissipate 0.2 W.
When the bridge is balanced,
\[
\frac{R_4}{R_o + R_4} v_{\text{in}} = \frac{R_3}{R_2 + R_3} v_{\text{in}}
\]

\[
\therefore \frac{R_4}{R_o + R_4} = \frac{R_3}{R_2 + R_3}
\]

Thus,
\[
v_o = \frac{R_4 v_{\text{in}}}{R_o + R_4 + \Delta R} - \frac{R_3 v_{\text{in}}}{R_o + R_4}
\]
\[
= R_4 v_{\text{in}} \left[\frac{1}{R_o + R_4 + \Delta R} - \frac{1}{R_o + R_4} \right]
\]
\[
= \frac{R_4 v_{\text{in}} (-\Delta R)}{(R_o + R_4 + \Delta R)(R_o + R_4)}
\]
\[
\approx -\frac{(\Delta R) R_4 v_{\text{in}}}{(R_o + R_4)^2}, \quad \text{since } \Delta R \ll R_4
\]

[b] \(\Delta R = 0.03 R_o \)
\[
R_o = \frac{R_2 R_4}{R_3} = \frac{(1000)(5000)}{500} = 10,000 \Omega
\]
\[
\Delta R = (0.03)(10^4) = 300 \Omega
\]
\[
\therefore v_o \approx \frac{-300(5000)(6)}{(15,000)^2} = -40 \text{ mV}
\]

[c] \(v_o = \frac{-(\Delta R) R_4 v_{\text{in}}}{(R_o + R_4 + \Delta R)(R_o + R_4)} \)
\[
= \frac{-300(5000)(6)}{(15,300)(15,000)}
\]
\[
= -39.2157 \text{ mV}
\]
P 3.70 [a] approx value = $\frac{- (\Delta R) R_4 v_{in}}{(R_o + R_4)^2}$

true value = $\frac{- (\Delta R) R_4 v_{in}}{(R_o + R_4 + \Delta R)(R_o + R_4)}$

\[\therefore \frac{\text{approx value}}{\text{true value}} = \frac{(R_o + R_4 + \Delta R)}{(R_o + R_4)} \]

\[\therefore \% \text{ error} = \left[\frac{R_o + R_4}{R_o + R_4 + \Delta R} - 1 \right] \times 100 = -\frac{\Delta R}{R_o + R_4} \times 100 \]

Note that in the above expression, we take the ratio of the true value to the approximate value because both values are negative.

But $R_o = \frac{R_2 R_4}{R_3}$

\[\therefore \% \text{ error} = \frac{-R_3 \Delta R}{R_4(R_2 + R_3)} \]

[b] % error = $\frac{- (500)(300)}{(5000)(1500)} \times 100 = -2\%$

P 3.71 $\frac{\Delta R(R_3)(100)}{(R_2 + R_3)R_4} = 0.5$

$\frac{\Delta R(500)(100)}{(1500)(5000)} = 0.5$

\[\therefore \Delta R = 75 \Omega \]

% change = $\frac{75}{10,000} \times 100 = 0.75\%$

P 3.72 [a] Using the equation for voltage division,

\[V_y = \frac{\beta R_y}{\beta R_y + (1 - \beta) R_y} V_S = \frac{\beta R_y}{R_y} V_S = \beta V_S \]

[b] Since β represents the touch point with respect to the bottom of the screen, $(1 - \beta)$ represents the location of the touch point with respect to the top of the screen. Therefore, the y-coordinate of the pixel corresponding to the touch point is

\[y = (1 - \beta) p_y \]

Remember that the value of y is capped at $(p_y - 1)$.
P 3.73 [a] Use the equations developed in the Practical Perspective and in Problem 3.72:

\[V_x = \alpha V_S \quad \text{so} \quad \alpha = \frac{V_x}{V_S} = \frac{1}{5} = 0.2 \]

\[V_y = \beta V_S \quad \text{so} \quad \beta = \frac{V_y}{V_S} = \frac{3.75}{5} = 0.75 \]

[b] Use the equations developed in the Practical Perspective and in Problem 3.72:

\[x = (1 - \alpha)p_x = (1 - 0.2)(480) = 384 \]

\[y = (1 - \beta)p_y = (1 - 0.75)(800) = 200 \]

Therefore, the touch occurred in the upper right corner of the screen.

P 3.74 Use the equations developed in the Practical Perspective and in Problem 3.72:

\[x = (1 - \alpha)p_x \quad \text{so} \quad \alpha = 1 - \frac{x}{p_x} = 1 - \frac{480}{640} = 0.25 \]

\[V_x = \alpha V_S = (0.25)(8) = 2 \text{ V} \]

\[y = (1 - \beta)p_y \quad \text{so} \quad \beta = 1 - \frac{y}{p_y} = 1 - \frac{192}{1024} = 0.8125 \]

\[V_y = \beta V_S = (0.8125)(8) = 6.5 \text{ V} \]

P 3.75 From the results of Problem 3.74, the voltages corresponding to the touch point (480, 192) are

\[V_{x1} = 2 \text{ V}; \quad V_{y1} = 6.5 \text{ V} \]

Now calculate the voltages corresponding to the touch point (240, 384):

\[x = (1 - \alpha)p_x \quad \text{so} \quad \alpha = 1 - \frac{x}{p_x} = 1 - \frac{240}{640} = 0.625 \]

\[V_{x2} = \alpha V_S = (0.625)(8) = 5 \text{ V} \]

\[y = (1 - \beta)p_y \quad \text{so} \quad \beta = 1 - \frac{y}{p_y} = 1 - \frac{384}{1024} = 0.625 \]

\[V_{y2} = \beta V_S = (0.625)(8) = 5 \text{ V} \]

When the screen is touched at two points simultaneously, only the smaller of the two voltages in the \(x\) direction is sensed. The same is true in the \(y\) direction. Therefore, the voltages actually sensed are

\[V_x = 2 \text{ V}; \quad V_y = 5 \text{ V} \]

These two voltages identify the touch point as \(480, 384\), which does not correspond to either of the points actually touched! Therefore, the resistive touch screen is appropriate only for single point touches.