Physics 3200 Solid-State Physics MWF 12:30 – 1:20 am Course Syllabus, Spring 2010

Instructor:

Colin Inglefield	
Office: 204 SL	Office Phone: 626-6127
Lab: 122 SL	Lab Phone: 626-6306
cinglefield@weber.edu	

Office Hours:

Monday-Friday 10:00-11:00

If these hours don't fit your schedule feel free to drop by my office or call at another time. If I am unavailable, you can make an appointment.

Texts:

J. I. Gersten and F. W. Smith, *The Physics and Chemistry of Materials* (Wiley 2001) R. H. Silsbee and J. Dräger, *Simulations for Solid State Physics* (Cambridge 1997)

I will provide copies of the *Simulations* book for you to use during the semester. These will need to be returned to me at the end of the semester.

The main test for the course (Gersten and Smith) has an ftp site with lots of supplementary material: <u>ftp://ftp.wiley.com/public/sci_tech_med/materials</u>

Overview/Comments:

As you might guess from the title, this course is meant to serve as an introduction to the physics of solids, or, more generally speaking, an introduction to materials science. In this course you will learn the language of solidstate physics, fundamental of the physical properties of solids, some experimental techniques, and some interesting (to me anyway) applications.

Although there is no scheduled laboratory period for this class, you will complete 5 laboratory-type activities over the course of the semester. I encourage (but will not require) you to work in groups of 2 or 3 on the labs. Each of you will turn in your own report. In addition, you will complete several "virtual" experiments with the simulation package.

At the end of the course each of you will give a 10-15 minute presentation on an experimental technique (of your choosing) used by researchers to characterize materials. You will be required to work with me in advance of your presentation. You will also each provide a problem/question from your talk and its solution/answer. The combination of these questions will constitute a portion of your take-home final examination.

This course is only offered every other year and partly because of that modern physics (Phsx 2740) is a corequisite (as opposed to a prerequisite). Some of you are further along in your physics education than others, and may have taken courses (Quantum Mechanics, Thermal Physics, Electricity and Magnetism, Physical Chemistry) that will help your understanding. As the authors of the text state "To gain the most benefit from courses based on this textbook, students should have had at least on year each of introductory physics, chemistry, and calculus, along with a course in modern physics or physical chemistry. For optimal use of the textbook it would be helpful if the

students have had courses in thermodynamics, electricity and magnetism, and an introduction to quantum mechanics." I will attempt to design assignments and exams which are as fair as possible to all the students.

The main text (Gersten and Smith) might have given you sticker shock and I apologize for that. There are very few books available at an appropriate level and many of those are out of date. The book is, in my opinion, a good value despite the high price tag. You will notice that there is much more material in the book than we will cover. With the recent publication date and the ftp site, the book is relatively up-to-date. If you find sections of the book difficult to work through, I can suggest some texts at a slightly lower level including:

Introduction to Phonons and Electrons by Lou Understanding Solids by Tilley Introductory Solid State Physics by Myers The Solid State: From Superconductors to Superalloys by Guinier and Jullien. Elementary Solid State Physics by Omar The Physics of Solids by Turton.

As David Goodstein states in States of Matter: "The field is not distinguished by imaginative book titles".

Grading:

Your grade will be based on homework, exams, and the final as follows:

Homework (including simulations)	20%
Exams (3) 3X10%	30%
Labs (4) 4X5%	20%
Presentation	10%
Final	20%

The homework assignments should be turned in by 5:00 on the day they are due. Solutions will be made available to you. Late assignments will be considered on a case-by-case basis.

In general, I will be less strict in grading your homework as compared to your exams. I will let you know the exam format and what material you will be accountable for at least one week in advance.

Notes:

Any student requiring accommodations due to a disability must contact Services for Students with Disabilities (SSD) in room 181 of the Student Services Center.

Attendance at lecture is strongly recommended. You will be responsible for material discussed in lecture, which may or may not be in the book.

Please turn cell phones and pagers off before coming to class.

Academic dishonesty will not be tolerated. Cheating on exams may result in your failure of the course.

	Monday	Wednesday	Friday	Notes
	Introduction	Crystal Lattices	Crystals: Directions	
Ian 4-8	Solids		Positions & Planes	
Jan 4-0	Materials Science			
	1.1	1.2-1.4	1.5	
	Crystal Basis	Packing Fraction	Elastic Scattering	Lab 1
Jan 11-15		Density	of Waves	Packing
	1617	Radial Dist. Fn.		Fraction
	1.0-1.7	1.0 Reciprocal Lattice	Diffraction	Lah 2
Jan 18-22	MLK Day	Recipiocal Lattice	Conditions	2D Diffraction
	Holiday	3.1-3.2	3.3-3.4	2D Difficetion
	Diffraction from	Diffraction from		
1 25 20	Caystals	Amorphous Solids	EVAMI	
Jan 25-29	Structure& Form Factor	-	EAANI I	
	3.5	3.6		
	Bonding	Covalent and Metallic	Van der Waals and	Lab 3
Feb 1-5	General	Bonding	Ionic Bonding	XRD
	2.1	2.2-2.3	2.4-2.5	
Eab 8 12	Mixed Bonding	Order and Disorder	Amorphous Solids	
red 8-12		4142	13	
	2.0-2.1	Defects	Stress and Strain	
Feb 15-19	Pres. Day	Local and Extended	Stress and Strain	
	Holiday	4.4-4.5	10.1-10.4	
Feb 22-26	Elastic Properties		Atomic Vibrations	
	_	EXAM II	1D Monatomic Lattice	
	10.5-10.7		5.1	
	1D Diatomic Lattice	Phonons	Specific Heat	
Mar 1-5	5.0	5254		
	5.2 Succific Heat	5.3-5.4 Thermal Expression	5.5-5.6	
Mor 8-12	specific rieat	Thermal Expansion	Drude Model	
	57	59	7 1-7 2	
Mar 15-19	Spring Break	Spring Break	Spring Break	
	Hall Effect	Bloch Theorem	Nearly Free	
Mar 22-26	Sommerfield Model	Bloch Functions	Electrons	
	7.3-7.4	7.6	7.8	
	Tight Binding	Metals, Insulators	Quantum Effects	
Mar 29- Apr 2	Models	Semiconductors,	Effective Mass	
	7.0	Semimetals	7.10	
	7.9	/.10 Somiconductors	7.12 Somiconductors	Lab 4
Apr 5-9	FYAM III	Band Structure	Doning	
Арі 5-7		11 1-11 2	11 5	
	Semiconductor	Applications		
A 10.16	Statistics, Confinement	Technology, Moore's	Student Presentations	
Apr 12-10		Law		
	11.6	11.12		
Apr 19-23	Student Presentations			

Phsx 3200 Spring Semester 2010 Schedule