Lecture 9: Other Factors Affecting AR

I. Gonadal
 A) Modulate AR response to catecholamines
 1) estrogen & progesterone → catecholamine metabolism
 2) oviduct & uterine smooth muscles response:
 a) α-AR → contraction: ↑estrogen → uterus
 b) β-AR → relaxation: pregnancy/↑progesterone → uterus

II. Adrenal Steroid Hormones
 A) glucocorticoid
 permissive role → cAMP mediated effects on liver/other organs
 catecholamines in adrenalectomized rats?
 ↓ gluconeogenesis/glycogenesis & lipolytic response of adipose
 ~cardiovascular response

III. Thyroid Hormones (TH)
 \[\uparrow \text{TH} \rightarrow \text{catecholamine effect enhanced} \]
 \[\downarrow \text{TH} \rightarrow \text{catecholamine effect depressed} \]
 sympathetic neurons

Sympathoadrenal Functions

I. Constancy of homeostasis
 A) ↓blood pressure, glucose, O₂ availability → ↑catecholamines
 B) stress any condition → elevated plasma catecholamines
 ↑E: dogs: barking
 ↑E & NE: humans → exercise, standing, post surgery, low glucose
 C) E
 adrenal: humoral messenger → stimulus to autonomic effectors
 D) NE
 sympathetic neurons → local control autonomic effectors
II. Dependent on the AR types at the effectors

A) Receptors of autonomic effector cells
 1) α-AR & β-AR
 2) only β-AR with cholinergic receptors

B) Smooth muscle
 1) α-AR contraction (except intestines): Ach → relaxation
 2) β-AR relaxation (except cardiac): cholinergic receptors contraction

C) Domination: α-AR > β-AR

D) Cellular secretion
 1) α-AR inhibitory
 2) β-AR stimulatory
Carbohydrate Metabolism

E → 1) β-AR: hepatic glycogenolysis & glucose release
 a) skeletal glycogen
 b) β-AR: glycogen → lactic acid
 c) lactic acid → liver → glucogenesis → glucose

Cat → 2) α-AR
 a) inhibitory pancreatic B cell insulin secretion

Cat → 3) β-AR: stimulatory pancreatic A cell glucagon secretion

denervation → anesthesia → 4) adrenal gland: blocked Cat response to hypoglycemia?
 suggest brain glucoreceptors regulating sympathoadrenal response
 research → caudal forebrain

Fat Metabolism

Adipose tissue
Cat adrenal/sympathetic β-AR →↑lipolysis FFA & glycerol

FFA →
1) brain/cardiac: energy source (glucose-sparing)
2) liver: conversion to glucose

Paradox: lean individuals do not gain weight when overfed

1) metabolic defect → obesity
2) genetic: conversion of food → body fat

 stimulants for sympathetic nervous system (SNS)
 diet-induced thermogenesis ↓ NE
Protein Metabolism

- E → β-AR & cAMP
- ↓ skeletal muscle release of AAs
- ↓ skeletal muscle proteolysis

E important short-term response in fight/flight response

- ↑ lactate/glycerol/glucose
- AA substrate not needed

Thermogenesis

Mammals (rats)

1) fasting:
 - sympathetic activity conserve calories
 - metabolic activity/heat production

2) feeding:
 - ↑ sympathetic activity expend calories
 - metabolic activity/heat production

3) shivering:
 - a) shivering thermogenesis → piloerection (goose bumps)
 - 1) SNS → primary effects: heat production
 - 2) muscular activity → secondary effects: heat production
 - b) nonshivering thermogenesis →
 - 1) NE → β-AR: brown adipose tissue (BAT)
 - a) metabolic heat production
 - b) dietary-induced
 - c) mitotic division of BAT humans??
Nonshivering Thermogenesis

exposure to cold \rightarrow NE \rightarrow β-AR: BAT \rightarrow **mitochondrial uncoupling protein (MUP)**

a) uncouple oxidative phosphorylation
b) utilize substrates to quickly generate heat rather than ATP
 1) WAT: hydrolysis of triglyceride \rightarrow fatty acid + glycerol
 2) BAT: fatty acid + MUP \rightarrow oxidation of fatty acid \rightarrow heat production
c) neonates (unswaddled newborns) infrared detection heat
 fat deposits neck & interscapular regions
d) premies leading cause of deaths
 \uparrow S/V \rightarrow heat loss
 \downarrow S of head (which is seldom cloth-covered)
 \downarrow musculature & inability or reluctance to shiver
 \downarrow thermal insulation, e.g. subcutaneous fat & fine body hair
 \downarrow nervous system development \rightarrow respond slower to cold
 (e.g. contracting skin blood vessels
e) animals coming out of hibernation
Adipose Tissue Hormones & Enzyme

1. **Adiponectin**
 - Modulates metabolism: glucose regulation & fatty acid catabolism
 - Type 2 diabetes
 - Atherosclerosis
 - Obesity
 - Non-alcoholic fatty liver disease

2. **Resistin**
 - **??** link between obesity & diabetes mellitus type 2
 - **a) mice:**
 - Correlation between resistin titers & blood glucose levels
 - **b) humans:**
 - No link: resistin & obese humans with diabetes mellitus type 2

3. **Angiotsensin**

4. **Plasminogen activator inhibitor-1 (PAI-1):**
 - Breakdown clots

5. **TNFα (tumor necrosis factor):**
 - Systemic inflammation

6. **IL-6 (interleukin):**
 - Acute inflammation reaction

7. **Leptin**
 - Regulation of appetite & metabolism
 - Modulates metabolism: glucose regulation & fatty acid catabolism
 - Obesity
 - Atherosclerosis
 - Non-alcoholic fatty liver disease
 - Type 2 diabetes

Cardiovascular Response to Stress

E → β-AR	1) Force of heartbeat
	2) Rate of heartbeat
	3) β-AR: vascular smooth muscular of coronary arteries
	Selective shunting of blood from
	Skin/ mucosa/ connective/ kidneys
	Kidneys??
	Glucose via urine
	4) Spleen α-AR
	↑erythrocyte plasma conc
	↑oxygen capacity
	5) β-AR bronchial smooth muscles → relaxation: dialation
	6) Clotting ← E
	↑adhesiveness
	↓clotting time
Sympathoadrenal Pathophysiology

1) adrenal chromaffin tumors
 early life

 CAT hypersecretion →

 a) hypertension
 b) hyper basal metabolism/ oxygen consumption
 c) weight loss
 d) psychosis
 e) tremulousness

2) asthma

 ↓ pulmonary function
 ?? β-AR bronchial smooth muscles receptor uncoupling & numbers

3) heart disease
 fat cell metabolism → lipogenesis / lipolysis

 a) α-AR → fat storage
 b) β-AR → catabolism
 c) sexual difference
 females: #s & size of fat cells in buttocks/ hips/ thighs
 males: "couch potatoes"
 d) anatomical: upper body adipose
 ↑ hypertension/diabetes /stroke?