Lecture 17 HORMONAL CHANGES DURING PREGNANCY

III. PREGNANCY

(begins when fertilized ovum implanted in uterine endometrium)

1) Te & P inhibit GnRH secretion by hypothalamus \rightarrow LH & FSH

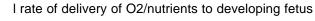
- a) no follicular development
- b) no ovulation
- c) no menstruation

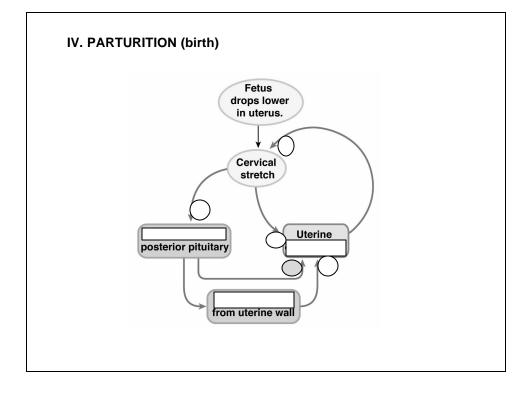
2) prolactin

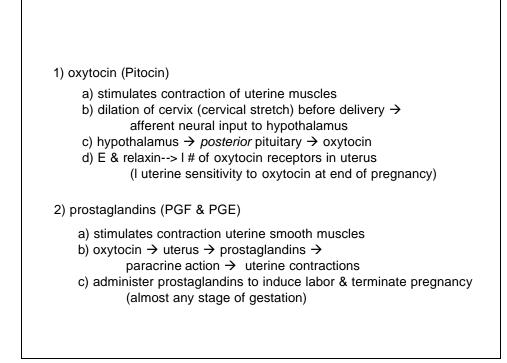
- a) maternal pituitary
- b) titers increase progressively & reach maximum at birth
- c) essential for E & P stimulation \rightarrow

maternal breast development & milk synthesis

3) relaxin
 a) hCG stimulates CL → relaxin 0-8 weeks b) after this time endometrium secretes c) relaxes pelvic ligaments in preparation of parturition (birth) d) with P inhibits uterine contraction → premature expulsion of fetus
4) insulin
 a) 3rd month from maternal pancreas b) maternal response → decreased sensitivity to insulin c) severe insensitivity → gestational diabetes temporary condition returns normal after birth
5) aldosterone
 a) maternal adrenal cortex b) maintain adequate Na+ levels in maternal circulation 1) Na+ uptake by fetus 2) Na+/water retention → ↑ maternal/fetal plasma volumes




a) maternal adrenal glands


- b) free/protein bound cortisol during pregnancy
- c) $E \rightarrow$ maternal liver \rightarrow cortisol binding globulin (CBG)
- d) a maternal adipose tissue volume & development of mammary glands

7) thyroxine (T4) and triodothyronine (T3)

- a) maternal thyroid thyroid gland increased size
- b) I T4/T3 production
- c) I basal metabolic rate
- d) I resting pulse rate
- e) hormones I maternal cardiopulmonary function

a) inhibit uterine contractions b) decrease in P removes inhibition of uterine contractions c) ?? this P decreases have not been found in all women d) placenta secretes P-binding protein before delivery:

3) P

decrease P \rightarrow recent studies

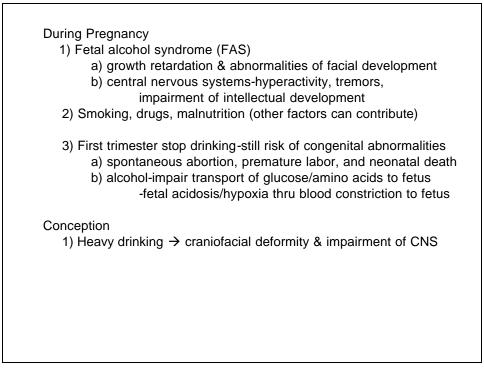
4) relaxin

- a) CL
- b) endometrium
- c) I # oxytocin receptors in uterus
- d) softens the cervix-pliable for facilitation of delivery
- e) relaxation pelvic ligaments \rightarrow easing fetal passage thru birth canal

IV. DEVELOPMENT OF BREAST DURING PREGNANCY

- 1) E (ovary/placenta)
 - a) stimulates proliferation of glandular tissue & ducts of breast
 - b) stimulates prolactin release
 - but blocks action of prolactin on breast
- 2) P (ovary/placenta)
 - a) stimulates proliferation of glandular tissue & ducts of breast
 - b) blocks action of prolactin on breast
- 3) hCG, hCS (placenta)-stimulates mammary growth
- 4) prolactin (anterior pituitary) → stimulates mammary growth
- 5) oxytocin (posterior pituitary)
 - a) no effect on mammary growth
 - b) sensitivity of myoepithelial cell to oxytocin I during pregnancy

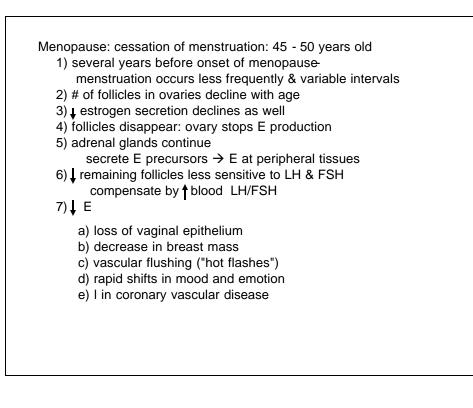
V. HORMONAL CONTROL OF LACTATION

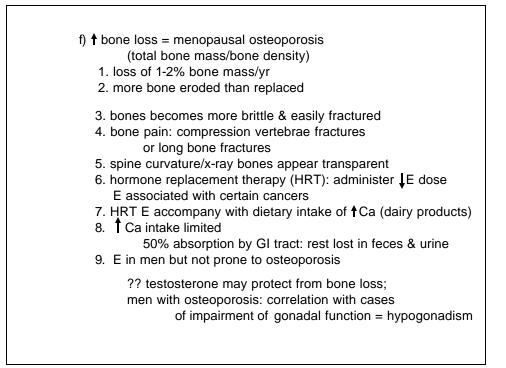

breast alveolar cells extract from maternal circulation for milk production

- glucose
- amino acids
- fatty acids
- glycerol
- 1.5 liters of milk/day
- 1) major differences between human & cow milk amount/type of proteins
 - 1. human protein (lactalbumin) lower casein-easier to digest
 - 2. cow-casein -forms sizable curds
 - heat
 - changes enzymes or pH

2) Contaminants

carrier-mediated diffusion/active transport from maternal during lactation a) drugs: 2% of maternal dose enters breast milk

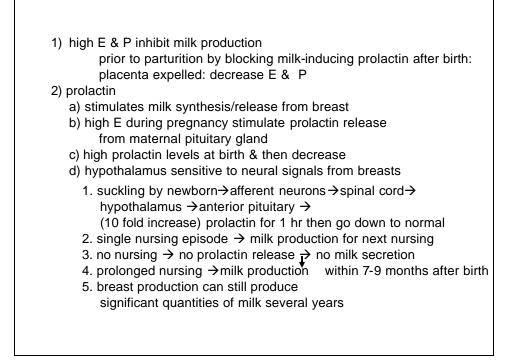

- 1. most pose no risk
- 2. some harmful: many sedatives: lithium, reserpine; valium diazepam symptoms: drowsiness; lethargy
- 3. anticoagulants-induce bleeding
- 4. narcotics-heroin painkiller Darvon-lead to addiction
- b) caffeine
- c) viruses
- d) environmental pollutants
- e) alcohol

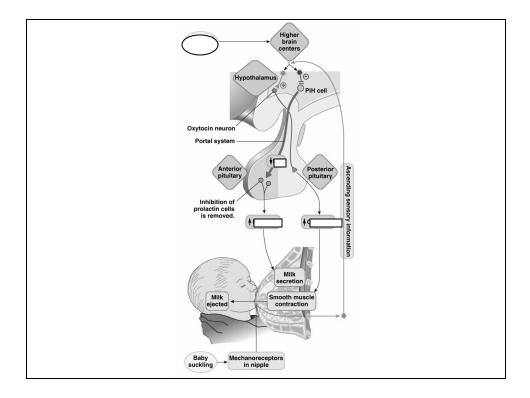


Chemical Termination of Early Pregnancy

- 1) Surgical intervention-risk of infection/postsurgical trauma
- 2) Chemical \rightarrow mefipristone (RU486)
 - a) synthetic steroid derivative with high affinity for P receptors → blocks action of P → antiprogesterone
 - b) CL secretes P during ovarian cycle & placenta after 6th week pregnancyc) P stimulates
 - 1. growth & proliferation endometrial lining
 - 2. strongly inhibits uterine contraction
- d) absence of P stimulation: endometrium undergoes hemorrhagi changes; outer layers of endometrium separate from uterus & discharged→ onset of menstruation
- e) RU486 together with prostaglandin induces uterine contractions
 & onset of menstruation (evacuation of uterine contents)
 whether or not a fertilized ovum is present

in France authorized for clinical use (U.S.?)


T & other androgens
 secreted by the ovaries in low amounts stimulate sexual drive
3) high titers at ovulation strongest urge in the menstrual cycle
4) high titers - oversecretion of adrenal glands/ovary
enzymatic defects in adrenal cortisol metabolism \rightarrow
oversecretion/production → ovarian tumor
a) hirsuitism-excessive growth of hair where hair usually not present
1. 10% of reproductive women
2. incidence higher menopausal women
degree (severity) of hirsuitism not correlated
with androgen production or titers of serum T
4. unbound T enters through membrane \rightarrow
converted to DHTby enzyme
5 a - reductase
5. DHT binds with cytoplasmic receptor: complex enters nucleus →stimulates m-RNA>hair growth
6. skin of hirsute women highly sensitive to available T:
result of high 5 a - reductase activity


5) extremely high tiers

Г

- a) virilization-masculinization of external genitalia
- b) lead to infertility
 - 1. T aromatized to estradiol in hypothalamus →disruption of LH/FSH secretion
 - 2. interference of follicular growth/maturation
 - 3.↑ T inhibits ovarian LH/FSH receptor formation 4. anovulation
 - a. oligomenorrhea (few menstrual cycles)
 - b. amenorrhea (absence of menstruation)
 - c. irregular menstrual cycles

Hyperprolactinemia
oversecretion of pituitary prolactin (PRL)
-excess milk production= galactorrhea
-amenorrhea/anovulation
-breast engorgement
-normal postpartum lactation fails to discontinue $ ightarrow$
(Chiari-Frommel syndrome)
-suckling of breastnormal stimulation of PRL
-stimuli afferent impulses in neuroendocrine reflex pathways $ ightarrow$
PRL secretion
e.g. tight fitting garments, trauma, surgery,
continued breast manipulation
-amenorrhea result of PRL? inhibition of
hypothalamic GnRH secretion → block of FSH/LH
 PRL directly inhibit ovarian E production-resulting amenorrhea
-women PRL and decreased E bone demineralization/bone fractures

e) inhibits GnRH from hypothalamus:

inhibits LH/FSH release from pituitary

- 1. breast feeding inhibit ovulation & reduce fertility
- 2. large individual variation during which
 - prolactin inhibits GnRH with prolonged nursing \rightarrow unreliable method of birth control

3) oxytocin

- a) stimulates milk release (milk let down)
- b) stimulates contraction of myoepithelial cells surrounding outer walls of alveoli
- c) released episodically during nursing:
 - 1. breast stimulation similar to pathway of prolactin
 - auditory stimuli (baby crying) release of oxytocin →milk ejection from breast