Molecular Shaping of the Beak

Ping Wu, Ting-Xin Jiang, Sanong Suksawewan, Randall Bruce Widelitz, Cheng-Ming Chuong*

Beak shape is a classic example of evolutionary diversification. Beak development in chicken and duck was used to examine morphological variations among avian species. There is only one proliferative zone in the frontonasal mass of chickens, but two in ducks. These growth zones are associated with bone morphogenetic protein 4 (BMP4) activity. By “tinkering” with BMP4 in beak prominences, the shapes of the chicken beak can be modulated.

During bird evolution, the beak emerged as the dominant avian facial feature, adapting birds to diverse eco-morphological opportunities (1–2). The beak is made up of multiple facial prominences: the frontonasal mass (FNM), maxillary prominences (MXP), lateral nasal prominences (LNP), and mandibular prominence (MDP) (fig. S1A). During development, these prominences are proportionally coordinated to compose a unique beak. Progress in molecular mechanisms underlying early beak morphogenesis has been reviewed recently (3, 4). Here, we focus on later events that mold the shape of the FNM, by comparing proliferation zones of chickens and ducks that have distinct beak shapes (Fig. 1A, fig. S2A).

Fig. 1. Cell proliferation and BMP4 function in chicken and duck beak morphogenesis. (A) Stage 36 chicken and duck beaks, top view. Blue, cartilage; red, bones. Double-headed arrows indicate peak tip width (fig. S2E). (B) Stage 27 frontal sections after 1.5 hours of BrdU labeling. See fig. S1C for stages 26, 28, 29, and 31 BrdU labeling. The percentage of BrdU-positive cells was quantified in nine regions using the grid overlay (12) shown in table S1. Arrow indicates the rostral margin. (C) Three-dimensional reconstruction of the percentage of BrdU-positive cells in the FNM. Red indicates >20% BrdU-positive cells, yellow 10 to 20%, and green <10%. Viewing the inner red zone through the yellow zone appears orange. Purple indicates proliferation in the cartilage region. (D) BMP4 RT-PCR from stage 25 FNMs showed a higher BMP4/GAPDH ratio in ducks than in chickens. (E) (Left) Stage 37 control. (Middle and right) RCAS-BMP4 or RCAS-noggin was injected into all beak prominences of chicken embryos and harvested at stage 37. Arrows indicate enlarged skeletal elements. (F) (Left) Stage 20 chicken FNM was divided into three regions (a to c, defined in fig. S2B). Excision of region b containing the frontonasal ectodermal zone and subjacent mesenchyme (inset) truncated the upper beak with distal cartilage elements missing as observed at stage 36. Ablation of region a or c showed normal growth (not shown). (Middle) BMP4 beads (inset, red circle) can rescue most growth and cartilage elements from region b-ablated specimens (stage 37). (Right) Addition of BMP4 beads to nonablated FNM resulted in wider upper beaks (stage 36).

Temporal- and spatial-specific changes of proliferative zones occur within the FNM (Fig. 1B; fig. S1, C and D). In stage 26 chickens, labeling with short pulses of BrdU (5-bromo-2’-deoxyuridine) showed cell proliferation in both FNM lateral edges. At stage 27, the two growth zones shifted toward the rostral margin, flanking the midline. At stage 28, these growth zones gradually converged into one centrally localized zone. In ducks, the two bilaterally positioned growth zones persisted in the lateral edges, widening the developing FNM. These changes precede morphological changes of the
FNMs. After stage 31, the basic beak structures were determined. The percentage of BrdU-positive cells was quantified in nine separate FNMs regions (Fig. 1B and table S1). A growth zone shift is clearly seen in the three-dimensional reconstruction (Fig. 1C).

Bone morphogenetic protein 2 (BMP2), BMP4, and BMP receptors are expressed in chicken beak prominences (5–7). We observed higher expression of BMP4 transcripts in ducks than in chickens, using reverse transcription polymerase chain reaction (RT-PCR) with primers conserved between chickens and ducks (Fig. 1D). Furthermore, BMP4 in the mesenchyme was closely associated with the shifting growth zones (figs. S1, C and E). Comparisons showed more diffuse BMP4 expression in the duck than in the chicken, and duck MXPVs were larger than chicken MXPVs (see fig. S1F).

We examined the roles of BMP4 in shaping beaks with two different strategies. To test whether BMP4 drives beak growth, we injected replication-competent avian sarcoma retrovirus (RCAS)-BMP4 into all beak prominences of stage 22 and stage 23 chicken embryos. This treatment resulted in larger beaks with significantly increased in length, width, and depth (Fig. 2A), as a result of a process regulated in part by BMP4 (10). We produced beaks that phenocopied those in nature by modulating BMP activities. It is likely that beak shape diversity is achieved by modulating prototypical molecular modules (J1), and proteins of the BMP pathway may mediate a spectrum of morphological designs for selection.

References and Notes

Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix

Loren D. Walensky,1,2 Andrew L. Kung,2,3 Iris Escher,4 Thomas J. Malia,5,6 Scott Barbuto,7 Renee D. Wright,3
Gerhard Wagner,5 Gregory L. Verdone,4* Stanley J. Korsmeyer1*

BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic α-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called “stabilized alpha-helix of BCL-2 domains” (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.

1Howard Hughes Medical Institute, 2Department of Pediatric Hematology/Oncology and Children’s Hospital Boston, 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. 5Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 6Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail: stanley_korsmeyer@dfci.harvard.edu (S.J.K.) and verdone@chemistry.harvard.edu (G.L.V.)

Within 24 hours, BMP4-coated beads induced surrounding mesenchymal cell proliferation (9).

18. P. Wu et al., data not shown.
22. We thank C. J. Tabin and A. Abzhanov for discussion, and B. R. Grant for comments. This work is supported by NIH grants AR42177 and AR47364 (C.-M.C.), and CA83716 (R.B.W.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/305/5689/1465/DC1
Materials and Methods
Figs. S1 to S3
Table S1
References
19 March 2004; accepted 23 July 2004

Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix

Loren D. Walensky,1,2 Andrew L. Kung,2,3 Iris Escher,4 Thomas J. Malia,5,6 Scott Barbuto,7 Renee D. Wright,3
Gerhard Wagner,5 Gregory L. Verdone,4* Stanley J. Korsmeyer1*

BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic α-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called “stabilized alpha-helix of BCL-2 domains” (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.

1Howard Hughes Medical Institute, 2Department of Pediatric Hematology/Oncology and Children’s Hospital Boston, 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. 5Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 6Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail: stanley_korsmeyer@dfci.harvard.edu (S.J.K.) and verdone@chemistry.harvard.edu (G.L.V.)

Within 24 hours, BMP4-coated beads induced surrounding mesenchymal cell proliferation (9).

18. P. Wu et al., data not shown.
22. We thank C. J. Tabin and A. Abzhanov for discussion, and B. R. Grant for comments. This work is supported by NIH grants AR42177 and AR47364 (C.-M.C.), and CA83716 (R.B.W.).

Supporting Online Material
www.sciencemag.org/cgi/content/full/305/5689/1465/DC1
Materials and Methods
Figs. S1 to S3
Table S1
References
19 March 2004; accepted 23 July 2004

Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix

Loren D. Walensky,1,2 Andrew L. Kung,2,3 Iris Escher,4 Thomas J. Malia,5,6 Scott Barbuto,7 Renee D. Wright,3
Gerhard Wagner,5 Gregory L. Verdone,4* Stanley J. Korsmeyer1*

BCL-2 family proteins constitute a critical control point for the regulation of apoptosis. Protein interaction between BCL-2 members is a prominent mechanism of control and is mediated through the amphipathic α-helical BH3 segment, an essential death domain. We used a chemical strategy, termed hydrocarbon stapling, to generate BH3 peptides with improved pharmacologic properties. The stapled peptides, called “stabilized alpha-helix of BCL-2 domains” (SAHBs), proved to be helical, protease-resistant, and cell-permeable molecules that bound with increased affinity to multidomain BCL-2 member pockets. A SAHB of the BH3 domain from the BID protein specifically activated the apoptotic pathway to kill leukemia cells. In addition, SAHB effectively inhibited the growth of human leukemia xenografts in vivo. Hydrocarbon stapling of native peptides may provide a useful strategy for experimental and therapeutic modulation of protein-protein interactions in many signaling pathways.

1Howard Hughes Medical Institute, 2Department of Pediatric Hematology/Oncology and Children’s Hospital Boston, 3Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 4Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. 5Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. 6Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

*To whom correspondence should be addressed. E-mail: stanley_korsmeyer@dfci.harvard.edu (S.J.K.) and verdone@chemistry.harvard.edu (G.L.V.)