Writing a Proof

1. Theorem. The sum of any three consecutive integers is divisible by three.

Proof. $\quad x+x+x+x+2=3 x+3=3(x+3)$
2. Theorem. The sum of any three consecutive integers is divisible by three.

Proof. $x \in \mathbb{Z} \Longrightarrow x+x+1+x+2=3 x+3=3(x+1) \Longrightarrow$ the sum is divisible by 3 .
3. Theorem. The sum of any three consecutive integers is divisible by three.

Proof. Let $x \in \mathbb{Z}$. Then $x+x+1+x+2=3 x+3=3(x+1)$. Therefore the sum is divisible by 3 .
4. Theorem. The sum of any three consecutive integers is divisible by three.

Proof. Suppose we are given three consecutive integers. We may write them in the form $x, x+1$, and $x+2$, where $x \in \mathbb{Z}$. Then

$$
x+(x+1)+(x+2)=3 x+3=3(x+1)
$$

Since $x+1 \in \mathbb{Z}$, we see that $x+(x+1)+(x+2)$ has the form $3 k$, where $k \in \mathbb{Z}$, and thus the sum is a multiple of 3 , as desired.

