More Homework for Math 4110

7. Problem: Find an example of a noncyclic group, all of whose proper subgroups are cyclic. Solution. The group $U(8)=\{1,3,5,7\}$ is noncyclic since $1^{1}=3^{2}=5^{2}=7^{2}=1$ (so there are no generators). The only proper subgroups are $\{1\}, \quad\{1,3\}, \quad\{1,5\}$, and $\{1,7\}$, which are all obviously cyclic.
8. Problem: Suppose a cyclic group G has exactly three subgroups: G (the whole group), $\{e\}$ (the identity subgroup), and a subgroup of order 7 . What is $|G|$?
Solution. If we let $n=|G|$, then G has a unique subgroup of order k for every divisor k of n. The given information about the subgroups implies that the only divisors of n are 1 and 7. So n must be a positive integer that is only divisible by 1 and 7 . This forces $n=49=7^{2}$. (If we replace 7 with a prime p, then the order of G must be p^{2}.)
9. Problem: Suppose G is a group and $a \in G$. Then $\langle a\rangle$ is a subgroup of $C(a)$.

Solution. It suffices to show that $\langle a\rangle \subseteq C(a)$. If $x \in\langle a\rangle$, then $x=a^{k}$ for some $k \in \mathbb{Z}$. Note that $x a=a^{k} a=a^{k+1}=a a^{k}=a x$, so by definition $x \in C(a)$, as desired.
28. Problem: Let a be a group element that has infinite order. Prove that $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$ if and only if $i= \pm j$.
Solution. If $i=j$, it is clear that $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$. If $i=-j$, then this amounts to showing that $\left\langle a^{i}\right\rangle=\left\langle a^{-i}\right\rangle$. But this is obvious since an element and its inverse always generate the same subgroup of a group.
Conversely, suppose that $\left\langle a^{i}\right\rangle=\left\langle a^{j}\right\rangle$. Then it follows that $a_{i} \in\left\langle a^{j}\right\rangle$ and $a^{j} \in\left\langle a^{i}\right\rangle$. The fact that $a_{i} \in\left\langle a^{j}\right\rangle$ implies that we may write $a^{i}=a^{j m}$ for some $m \in \mathbb{Z}$. Similarly, the fact that $a^{j} \in\left\langle a^{i}\right\rangle$ implies that we may write $a^{j}=a^{i n}$ for some $n \in \mathbb{Z}$. By Theorem 4.1, we may conclude that $i=j m$ and $j=i n$. These equations combine to yield $i=j m=i n m$. This forces $n m=1$ (I'll let you worry about the possibility that $i=0$), and since $m, n \in \mathbb{Z}$, we have either that $m=n=1$ or $m=n=-1$. The case $m=n=1$ forces $i=j$, and the case $m=n=-1$ forces $i=-j$.
30. Problem: Suppose a and b belong to a group G, a has odd order, and $a b a^{-1}=b^{-1}$. Show that $b^{2}=e$.
Solution. If we take the inverse of both sides of $a b a^{-1}=b^{-1}$, we obtain $b=a b^{-1} a^{-1}$. Thus by substituting either $b^{-1}=a b a^{-1}$ or $b=a b^{-1} a^{-1}$, we obtain

$$
\begin{aligned}
b & =a\left(b^{-1}\right) a^{-1}=a\left(a b a^{-1}\right) a^{-1}=a^{2}(b) a^{-2} \\
& =a^{2}\left(a b^{-1} a^{-1}\right) a^{-2}=a^{3}\left(b^{-1}\right) a^{-3} \\
& =a^{3}\left(a b a^{-1}\right) a^{-3}=a^{4} b a^{-4} .
\end{aligned}
$$

I am too lazy to do it here, but one can easily prove (by induction) that for every odd integer m, we have $b=a^{m} b^{-1} a^{-m}$. In particular, this holds if m is the order of a (which is assumed
to be odd). But in that case, this becomes $b=e b^{-1} e=b^{-1}$. From $b=b^{-1}$, it is easy to see that $b^{2}=e$.
54. Problem: Let $a, b \in G$, and suppose $|a|$ and $|b|$ are relatively prime. Show that $\langle a\rangle \cap\langle b\rangle=\{e\}$. Solution. Let $x \in\langle a\rangle \cap\langle b\rangle$. Since $x \in\langle a\rangle$, general facts about cyclic groups imply that $|x|$ is a divisor of $|a|$. Similarly, since $x \in\langle b\rangle$, we have that $|x|$ is a divisor of $|b|$. But now $|x|$ is a common divisor of the two relatively prime integers $|a|$ and $|b|$, so it must be that $|x|=1$. The only element with order 1 is the identity element, so $x=e$.

