Proof Writing Practice

Definitions: An integer is even if it has the form $2 n$ for some $n \in \mathbb{Z}$. An integer is fun if it has the form $3 m$ for some $m \in \mathbb{Z}$. An integer is happy if it has the form $6 k$ for some $k \in \mathbb{Z}$.
Theorem. An even integer times a fun integer is happy.
Proof.

Question: How do you write an assertion of the form $\mathcal{A} \subseteq \mathcal{B}$ into an assertion of the form "if p then q "?
e.g. Theorem. If $\mathcal{A}=\{8 k+3 \mid k \in \mathbb{Z}\}$ and $\mathcal{B}=\{4 k+7 \mid k \in \mathbb{Z}\}$, then $\mathcal{A} \subseteq \mathcal{B}$.

Proof.

Question: How do you write an assertion of the form $\mathcal{S}=\mathcal{T}$ into an assertion of the form "if p then q "?
e.g. Theorem. If $\mathcal{S}=\{6 m+3 \mid m \in \mathbb{Z}\}$ and $\mathcal{T}=\{6 \ell+15 \mid \ell \in \mathbb{Z}\}$, then $\mathcal{S}=\mathcal{T}$.

Proof.

Question: When does this contrapositive stuff become useful?
e.g. Theorem. Let $x, y \in \mathbb{Z}$. If $x+y$ is even, then x and y have the same parity.
(Before we start, let's think about the definitions of even and odd.)
Proof.

