Homework 0. Due Thurs Sept 10

1. If A is an $n \times n$ matrix (with real number entries), a matrix M is called an inverse of A of $A M=I_{n}=M A$, where I_{n} is the $n \times n$ identity matrix. Prove that an $n \times n$ matrix A either does not have an inverse or has exactly one inverse.
2. Suppose f and g are functions such that the composition $f \circ g$ is defined. Prove that if f and g are both onto, then $f \circ g$ is onto.
3. Let \mathbb{Q} denote the set of rational numbers (so that $\mathbb{Q}=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in \mathbb{Z}, n \neq 0\right\}$. Let $\mathbb{Q}_{\geq 0}$ denote the set of nonnegative rational numbers. Prove that the function $f: \mathbb{Q} \rightarrow \mathbb{Q}_{\geq 0}$ given by $f(x)=x^{2}$ is not onto. Note: There is a well known fact about square roots that you are welcome to cite (without proving it) if it is helpful.
4. Let $\mathcal{A}=\{8 k+3 \mid k \in \mathbb{Z}\}$ and let $\mathcal{B}=\{8 k-13 \mid k \in \mathbb{Z}\}$. Prove that $\mathcal{A}=\mathcal{B}$.
5. Let $\mathcal{C}=\left\{m^{2} \mid m\right.$ is an odd integer $\}$ and $\mathcal{D}=\{4 k+1 \mid k \in \mathbb{Z}\}$. Prove that $\mathcal{C} \subseteq \mathcal{D}$.
6. Suppose that M and N are inverses of A. Then by definition, $M A=I_{n}=A M$ and $N A=I_{n}=$ $A N$.
... blah, blah, blah ...
Therefore $M=N$.
7. Write $f: B \rightarrow C$ and $g: A \rightarrow B$, so that $f \circ g: A \rightarrow C$. To show that $f \circ g$ is onto, let $c \in C$. Then
... blah, blah, blah ...
Therefore there exists $a \in A$ such that $(f \circ g)(a)=c$, and it follows that $f \circ g: A \rightarrow C$ is onto.
8. To show that $f: \mathbb{Q} \rightarrow \mathbb{Q} \geq 0$ is not onto, we give a specific element of $\mathbb{Q} \geq 0$ that is not the image of an element of \mathbb{Q}. If there exists $x \in \mathbb{Q}$ with $f(x)=\cdots$, then blah, blah, blah \cdots
This cannot be the case, so we conclude that $f: \mathbb{Q} \rightarrow \mathbb{Q}_{\geq 0}$ is not onto.
9. We first show that $\mathcal{A} \subseteq \mathcal{B}$. Let $a \in \mathcal{A}$. Then by definition $a=\ldots$.

Blah, blah, blah
Therefore $a \in \mathcal{B}$.
We next show that $\mathcal{B} \subseteq \mathcal{A}$. If $b \in \mathcal{B}$, then by definition, $b=\ldots$. Then blah, blah, blah ...
Therefore $b \in \mathcal{A}$.
5. To show that $\mathcal{C} \subseteq \mathcal{D}$, let $c \in \mathcal{C}$. Then by definition, $c=m^{2}$, where $m \ldots$

Then blah, blah, blah...
Therefore $c \in \mathcal{D}$.

