I. Introduction

Physiological processes similar to mammals

- double circulation (birds r. aortic arch)
- shiver to generate heat
- evaporative water to dissipate heat
- change thickness of insulation

Birds maintain high body temperature
use an array of adaptations

- structural
- physiological
- behavioral
- ecological

Temperature Regulation

Birds are endothermic thermoregulators – use metabolism as well as behavioral mechanisms to maintain constant body temperature.

But metabolic rates of birds generally much higher than in mammals
MR small bird ~ 70% higher than mammal of similar wght.

WHY?
II. Body Temperature

A. Normal range

Hottest animals, ~ 40°C (104°F) but ranges from 38 - 44°C for different species

Brown Pelican – 40.3
Rock Pigeon – 42.2
Black-billed Magpie – 41.8
House Sparrow – 43.5

B. Variation

Unlike mammals, T_b can be variable
Difficult to measure
many variables can influence T_b

1. Stress
handling elevates T_b

2. Diurnal variation

Deep T_b varies during 24-hr period.
Diurnal birds - T_b highest during day –
12 spp of passerines

3. Age – T_b nestlings are lower than adult bird but increase until adult levels ~ 20 d.

C. Why so hot?

Little argument for ultimate answer to question.

Ability to be continuously metabolically active independent of the environment is certainly adaptive.

What is the cost to maintaining constant $T_b$

require constant energy supply

But why maintain higher body temps than mammals?

Consider gradients between birds body and environment.

Avg sea $T = 15^\circ C; g = 25$

Avg earth $T = 13-14^\circ C; g = 26$

Mean annual $T$ in Tropics $= 25 – 27^\circ C; g = 14$

Numerous hypotheses exist which explain the high temps maintained by birds.

1. Maxithermy Hypothesis

Birds maximize metabolic rate (higher $T_b$) so that growth rate (reproductive rate) will be maximized.

Evidence –

a. unpregnant sloths regulate $T_b$ rather poorly, when pregnant much better

b. Indian Rock Python elevates $T_b$ 3-5 when incubating eggs.
2. Hot enough to trot hypothesis – aka Phil Osterhaus hypothesis.

Birds want to maintain a $T_b$ at the highest level they would experience under stress. Want to ensure they operate metabolically. If too low??

3. $O_2$ transport Hypothesis – Transport of $O_2$ is Temp dependent.

Warm blood carries more than cold blood.

4. Law of the Minimum Hypothesis
   a. Need understanding of definitions

b. Model
Assume 2 birds with same metabolic rates, wght, insulation.

$T_{b1} = 26^\circ C$

$T_{b2} = 40^\circ C$

When $T_a < 20^\circ C$ energy cost for 2 is higher than 1 ~ 68% less than energy cost of bird 2.

When $T_a = 46^\circ C$, 1 suffers higher evaporative water loss than 2.

Difference results in 1 becoming hyperthermic at 30$^\circ C$, 2 hyperthermic at 43$^\circ C$.

Hyperthermia = elevation of body temp above normal range. Lethal limit for most birds is ~ 46$^\circ C$ (115$^\circ F$).
This hypothesis proposes –

Birds opt to use more energy during colder periods (to maintain high $T_b$) rather than incur the cost (energy + water) of lower $T_b$ during periods of high $T_a$.

D. Core-shell concept

Peripheral body core

Internal body core

III. Thermogenesis and Thermolysis

A. Definitions

Thermogenesis = heat production

Thermolysis = heat loss

Constancy in $T_b$ is obtained by balancing thermogenesis with thermolysis.
B. Hypothermia - affects metabolic rate.
Colder the bird the slower the metabolic rate.
Slower the metabolic rate the colder the bird becomes.
Positive feedback loop leads to death.
Proximate cause is direct effect of low $T_b$ on cellular functions (chemical reactions).

Adaptations for thermoregulation under cold stress center on -
• reduce thermolysis
• increase thermogenesis

C. Hyperthermia – speeds up metabolic rate.
Results in positive feedback loop.
Unlike hypothermia death usually does not always result from the direct effects of elevated temperature.
Death can be due to problems arising from hyperventilation of the bird for heat dissipation.

Adaptations for thermoregulation under heat stress really only involve increase thermolysis.

IV. Heat Flow
Need an understanding of physical mechanisms birds use to exchange heat with environment

A. Conduction
Matter composed of molecules in motion.
Hot molecules move faster then slow molecules.
Thus hot molecules impart their energy to slower moving cold molecules when two objects are in contact.

Conduction occurs between birds body and substrate bird is resting on.
Also between skin, feathers and boundary layer of bird.
Matter varies in ability to conduct heat.
Water – good conductor
Air – poor
Down - poor
B. Convection

Takes place in gases and liquids (actual movement of gases and liquid).
Flowing air or water can carry with it heat energy.
Circulatory system of birds transports heat through the body (responsible for internal convection)

C. Radiation

All matter in the universe is continually radiating energy. Main source is sun.
No conducting or transporting medium is required.
Cold bodies - net thermal gain through radiation exchange.
Warm bodies - net thermal loss.

V. Adaptations for reducing thermolysis under cold stress.

Birds LCT not all that low! 20 – 30 °C
Few birds below 10°C.
American Dipper (50g) feeds in Montane streams in Great Basin. LCT = 11.5°C
Common Raven = 0°C

A. Anatomical

1. Reduction in peripheral tissues in exposed extremities.
   - Birds minimize blood flow to extremities
   - Few muscles in lower leg

2. Seasonal changes in plumage density

<table>
<thead>
<tr>
<th>Species</th>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-throated Sparrow</td>
<td>2600</td>
<td>1500</td>
</tr>
<tr>
<td>Carolina Chickadee</td>
<td>1700</td>
<td>1100</td>
</tr>
<tr>
<td>Dark-eyed Junco</td>
<td>32% heavier</td>
<td></td>
</tr>
<tr>
<td>Common Redpolls</td>
<td>31%</td>
<td></td>
</tr>
<tr>
<td>Stellar’s Jay</td>
<td>45%</td>
<td></td>
</tr>
</tbody>
</table>

3. Counter-current heat exchange

Rete mirabile present in extremities
Outgoing arterial blood gives up heat to incoming cooler venous blood.
4. Bergman’s Rule – In a species inhabiting a variety of climates there is a trend toward larger size in colder areas, hence reduced s:v ratio.

Inverse relationship between body size and mean ambient temperature.

What does increased size do for the organism in cool environments?

Many species exhibit this pattern.

Downy Woodpecker

House Sparrows

What about Canada Geese?

Branta canadensis
- B.c. hutchinsoni – 1.6kg
- B.c. minimus – 2.3kg
- B.c. interior – 4.1kg
- B.c. maxima – 6.8kg
5. Importance of surface to volume ratio
The s:v ratio has important consequences to metabolism and hence thermoregulation.

SA proportional to Weight $^{0.67}$

MR related to W as $\text{Kcal/day} = 86.4 W^{0.668}$

Thermogenesis must balance thermolysis (function of SA)

Heat loss is proportional to W of the organism raised to 2/3 power.

Calculate separately for Passerines & Nonpasserines

Nonpasserines $\text{Kcal/day} = 78.3 W^{0.723}$

Passerines $\text{Kcal/day} = 129 W^{0.724}$

Convert to linear function –

Nonpasserines $\text{Kcal/day} = 78.3 + 0.723 \log W$

Passerines $\text{Kcal/day} = 129 + 0.724 \log W$

For same W, passerines metabolism ~ 50% > than nonpasserines within ZTN.

If calculate metabolism below LCT (0°C) relate to W relationship changes – slopes change, becomes less steep.

i. small birds are more greatly affected by low T relative to large birds.

ii. slope of passerines is less steep than nonpasserines (nonpasserines more affected by cold)

iii. more derived passerines are better adapted to cold

Hypothesis – Passerines may not need to migrate

How could we test this hypothesis?

<table>
<thead>
<tr>
<th>Lat.</th>
<th># Censuses</th>
<th>Mean Total Sp</th>
<th>% Nonpasserines</th>
<th>% Passerines</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 N</td>
<td>11</td>
<td>25</td>
<td>39</td>
<td>61</td>
</tr>
<tr>
<td>37N</td>
<td>10</td>
<td>64</td>
<td>45</td>
<td>55</td>
</tr>
<tr>
<td>26N</td>
<td>4</td>
<td>128</td>
<td>55</td>
<td>45</td>
</tr>
</tbody>
</table>
B. Behavioral Adaptations

1. Roosting in cavities
   Birds also regulate by seeking changes in microclimate during hottest and coldest time of day.
   - Sociable Weavers
   - Black-capped Chickadees

Goldfinches roosting in evergreens reduced energy demands by 1/3 compared to those roosting in open sites.

Overhead shelter from night sky also important.
Radiation losses can be large.

Calliope Hummingbird

2. Huddling
Grouping together decreases the group’s s:v ratio.
- Brown creepers
- Pygmy Nuthatches

3. Migration
4. Body positioning
Tuck bill into plumage, sitting on legs, flying with legs pulled into plumage.

C. Physical
Changing physical properties of insulative shell affects heat conductivity.

1. Pteroerection
   a. Ring Doves – overall erection increases depth of plumage by 400% & thermal resistance by 56%.
   b. Occurs within ZTN and below LCT
2. Reduction of peripheral blood flow
   - constrict surface vessels to shunt blood away from surface.

V. Adaptations for Thermogenesis under Cold Stress
A. Ectothermic Strategy – Plumage coloration
1. Melanic Zebra Finches – use 23% less energy at the same temp than albinistic birds

2. Wind reduces this advantage

![Graph showing heat gain vs. wind speed for black and white birds.]

3. Why are Snowy Owls white?
   Plumage very thick to protect against heat loss.

B. Shivering
   Only metabolic response available to birds.
C. Tolerance of hypothermia
   If can survive low $T_b$, then gradient with $T_a$ is reduced – thermolysis is reduced.
   1. $T_b$ lowered 2 - 3°C each night
   2. Heterothermia can occur under temporary cold stress

a. Anna’s Hummingbird would require 10.23 Kcal/day at normal $T_b$, but when in torpor only 7.55 Kcal/day (27% savings)
b. MR drifts lower until 2nd arousal reached, bird initiates thermogenesis
c. Torpor common in Apodiformes and Caprimulgiformes. Also known in Snowy Owl, Black-capped Chickadee, Swallows, Rosy Finches, Manakins.
3. Heterothermia under seasonal cold stress.
Hibernation in at least 1 spp. Common Poorwill.

December 29, 1946 Edmund Jaeger discovered torpid Poorwill in S. California.
Returned to same crevice following winter (Nov – Feb). \( T_b \) ranged from 18 – 19.8\(^\circ\)C
At \( T_b \) 10\(^\circ\)C mr slows to 1/10 normal resting value.
1g fat support hibernating Poorwill for 10 days.

Torpid Common Poorwills able to attain flight at low \( T_b \) 27.4 – 30.8\(^\circ\)C
Lowest reported flight temps for a bird.

2 ways to decrease LCT
- increase metabolic rate
- increase insulation

Tropical birds have thinner skin and less dense feather coat than temperate and arctic birds.

House Sparrows – MR in coastal Texas 20% lower than in Colorado.

D. Latitudinal Relationships of Thermogenesis and LCT

<table>
<thead>
<tr>
<th>Arctic</th>
<th>Temperate</th>
<th>Tropic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow Bunting 9</td>
<td>N. Cardinal 18</td>
<td>Waxbill 28</td>
</tr>
<tr>
<td>Gray Jay 6</td>
<td>Blue Jay 18</td>
<td>Manakin 20</td>
</tr>
<tr>
<td>Herring Gull 10</td>
<td>Horned Lark 20</td>
<td>Budgerigar 34</td>
</tr>
<tr>
<td></td>
<td>Dark-eyed Junco 24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Turkey Vulture 26</td>
<td></td>
</tr>
</tbody>
</table>

E. Seasonal shift in LCT
1. Seasonal changes in plumage density
2. Arctic and temperate birds carry more subcutaneous fat in winter than in summer.
3. Seasonal preference for lipids rather than in carbohydrates in muscle metabolism
4. No change in aerobic thermogenic capacity of avian muscle but hematocrits increase in winter.
V. Adaptations for increasing Thermolysis under heat stress.

A. Evapotranspiration
Heat dissipated by evapotranspiration.
Liquid water to vapor – 580 kcal/g at 30°C

B. Physiological Control
At Tb of 41 – 44 °C hypothalamic panting center takes over from medulla.
Panting rates are 16 – 27 x resting breathing rates
At Tb of 46 °C, panting volume of air exchange blown off so much CO2 that alkalosis could potentially occur.

Mechanisms to prevent alkalosis
1. Tracheal dead air space.
   In Rock Pigeons, panting begins at Tb of 43°C but volume of air exchange is small because tracheal dead air space. No alkalosis.
   Trachea heavily invested with arterial blood network – another rete mirable.
   This system transfers heat from the blood to the surrounding air in trachea.

2. Esophageal pumping
   Other Columbiforms use esophageal pumping (Ring Doves).
   Plexus of blood vessels to transfer heat from the blood into the air within esophagus.

50% water loss in small birds through skin.
No water loss in Ostriches.
Rest of water loss is through respiration.
Both skin and breathing system water loss can be controlled, in part.

Alkalosis – abnormally high pH in ECF
Increased breathing rate causes loss of CO2 which normally disassociates into carbonic acid in blood.

\[
\text{H}_2\text{O} + \text{CO}_2 \rightarrow \text{H}_2\text{CO}_3 \rightarrow \text{H}^+ + \text{HCO}_3^-
\]

Death follows from enzyme inactivation by high pH rather than temperature.
3. Gular fluttering
Pelican moves hyoid which causes pharynx to flap.
Found in Strigiforms, Columbiforms, Anseriformes, Pelecaniformes. No passerines do this.

C. Physical mechanisms
Birds can change physical properties of shell to increase thermolysis.
1. Increase peripheral flow by dilation
2. Fluffing feathers to disrupt shell and expose skin to air for increased cutaneous heat loss.

D. Anatomical
Plumage color
Why are tropical gulls dark while temperate gulls are gray and white, and arctic gulls are white?

Tropical gulls are dark because …

In still air, white birds have the advantage – less heat is actually absorbed.

As wind increases dark birds have the advantage.

Why???

Gray Gull
- nests in Atacama desert of Chile
- morning plumage maximally depressed
- afternoon plumage becomes maximally erect
- if it were white would reflect heat back toward body
E. Temporary tolerance of Hyperthermia
Temporarily tolerate rises in $T_b$ of 2 - 4 °C
decreases gradient with environment
This mechanism also used by birds to conserve water.

F. Behavioral Mechanisms
1. Decreasing activity
2. Flying with legs extended
3. Change body position

4. Urohydrosis – $T_a$ above 45°C Wood Storks
increase rate of defecation on legs. Provides
additional evaporative cooling.
Known in 12 spp storks

G. Flight
Heat produced during flight could be lethal.
1. $T_a$ of -5°C, evaporative cooling of flying
   Starling only 5% Metabolic heat production
2. $T_a$ of 29°C, 19% of heat production
3. $T_a$ above 7°, starling can become dehydrated
   when flying

Water Stress
I. Maintaining Water Balance
Most difficult at high Ta.
Continually evaporating from bird.
Understanding of how birds deal with stress
comes from laboratory and field studies.

Joshua Tree National Monument
Fall migration very stressful time
Shade temps > 100°C, free water difficult to
find.
100’s dead birds found.
A. Water Losses

1. Cutaneous and respiratory

Largest water losses for birds through skin and respiratory surfaces.

Drying capacity of air is dependent on $T_a$ and its humidity.

Diurnal variation

High $T_a$ – midafternoon

High humidity - night

- Convection can also contribute to water loss.
- Activity
- Body size – small birds more difficult to remain in balance.

25°C at rest

147g California Quail – 3.5%

19g House Finch – 17.2% of body weight/24rs

2. Urinary and fecal losses

Main excretory product – uric acid, urate salts

Uric acid highly insoluble – cannot reabsorb large amounts of water.

Excreted as semisolid.

Water stress – reabsorption can occur within cloaca, large intestine, back as far as gastrointestinal tract.

Brewer’s Sparrow – reduces water content of excrement from 93 – 33%

2. Regurgitation

Major source of loss during nesting.

Can remove water from crop and esophagus.

Production of crop milk more of a stress 65 – 81% water

Young gain 5.8g/day

Protein content – 13 – 18%

Fat content – 7 – 13%

3. Egg laying

Yolk and albumin high water content 70-80% by weight.

1 egg/24hr
B. Water gains

1. Metabolic – result from oxidation of organic compounds. Quantity depends on type of food metabolized. Fats release most water – more energy/g to breakdown than carbohydrates. No bird can survive solely on metabolic water.

2. Water from succulence
Insects 50 – 90% water content
Seeds 5 – 10%
Brewer’s and Sage Sparrows able to survive on metabolic sources and those found in diet. Reabsorption & minimizes losses – cools exhaled air reclaims from nasal passages.

19g HOFl at 25°C
Gains ~ 5% of body mass over 24hr, loses 17% due to evaporation during same period.

3. Surface Water
Few and far between.