
EE 2700 Project 2 – Microprocessor Design

This project may be done individually or in teams of two. You may consult others
for general questions but not for specific issues. Cheating will not be tolerated
and will result in a zero score for this part of the project.

In this project, you will design a simple microprocessor except for the control
logic, which you will do in Project 3. The first step in any design is to get the
requirements.

Requirements:
1. The microprocessor shall have synchronous memory interface consisting of:

a) an 8-bit output bus for the memory address, asserted high.
b) an 8-bit bi-directional bus for the memory data, also asserted high.
c) a write output, asserted low. If write is asserted, the microprocessor
 shall drive the data bus with the data to be written to memory.
d) a read output, asserted low. If read is asserted, the microprocessor
 shall sample the data bus. Read and write shall never be asserted
 at the same time.

2. The microprocessor shall use the memory interface to fetch instructions.
3. Instructions shall consist of a one-byte operation code (opcode) and, for

some instructions, one byte of address or immediate data.
4. Instructions shall be fetched and executed in order, starting with address

zero, until (a) an instruction is executed that changes the fetch address, or
(b) an instruction is executed that causes the microprocessor to halt.

5. The microprocessor shall contain an 8-bit accumulator that receives the
result of any arithmetic instruction.

6. The microprocessor shall contain a carry flag that is set or cleared based
on whether or not an add (or add with carry) instruction results in a carry-
out. All other instructions leave the carry flag unchanged.

7. The microprocessor shall support instructions to load the accumulator
from memory and store the accumulator to memory.

8. The microprocessor shall support both immediate and direct addressing
modes.

9. The accumulator shall be one operand for all arithmetic instructions. For
operations with two operands, the second operand shall come from
memory (either immediate or direct).

10. The microprocessor shall support the instructions shown in Table 1.
11. The microprocessor shall have an asynchronous reset (asserted low).
12. The microprocessor shall have a minimum clock speed of 20MHz.

Table 1.
Opcode Name Description
LDI Load Immediate Load the next byte of the program into the accumulator
LDM Load Memory Treat the next byte in the program as an address, and load the

contents of memory at that address into the accumulator.
ADDI Add Immediate Add the next byte of the program to the accumulator.
ADDM Add Memory Treat the next byte in the program as an address, and add the

contents of memory at that address to the accumulator.
ADCI Add Immediate

with Carry
Add the next byte of the program plus the carry flag to the
accumulator.

ADCM Add Memory
with Carry

Treat the next byte in the program as an address, and add the
contents of memory at that address plus the carry flag to the
accumulator.

XORI Subtract
Immediate

Compute the exclusive-or of the accumulator and the next
byte in the program and put the result in the accumulator.

XORM Subtract Memory Treat the next byte in the program as an address, compute
the exclusive-or of the accumulator and the memory at that
address, and put the result in the accumulator.

STM Store Memory Treat the next byte in the program as an address, and store
the contents of the accumulator at that address.

JMP Jump Load the next byte of the program into the program counter
JC Jump if Carry If the carry flag is set, load the next byte of the program into

the program counter, otherwise discard that byte.
JNC Jump if No Carry If the carry flag is not set, load the next byte of the program

into the program counter, otherwise discard that byte.
HALT Halt Stop running the program. This will be the last instruction

executed in a program.

After you understand the requirements, the next step is to develop an algorithm
or technique to meet the requirements. In this case, we will start with the
accumulator and carry. Since the accumulator and carry flag are used the store
the output of all arithmetic operations, it makes sense to make them out of D flip-
flops and connect them directly to the ALU. Likewise, since they are also the
source of at least one operand, they can be routed directly to one input of the
ALU. (See figure on the next page.) It usually works best if the accumulator is
actually 9-bits in size and includes the carry bit. If you wish, you can redesign
your ALU in VHDL first.

The accumulator will need a clock and possibly a clock enable input (because
you may not want to update the accumulator on every clock cycle).

The second step is to create an interface for the memory. Data can either go out
to the memory (write) or come in from the memory (read). This means you will
need a bi-directional bus with line drivers. (See figure below.) Most of the time
you will want to read the memory and put what you read onto an internal bus, but
sometimes you will need to write the results from the accumulator to the memory.
The memory interface uses the write (WR) signal (asserted low) to tell it when to
write and when to read.

The memory interface is not yet complete because we haven’t considered what
to put on the address bus. We are required to fetch instructions in sequential
order, so we can generate the addresses for those instructions with a counter.
This counter is historically called the “program counter” or PC. Since some
instructions change the PC, the counter will need to be loadable.

Accumulator ALU

Operand
(Internal Bus)

Result

Opcode

Result from
Accumulator

Data bus
(to/from memory)

Write

Internal
Bus

Some of the required instructions transfer data to or from memory. This poses a
double challenge. First, the PC should not increment on the cycle that data are
transferred. This can be handled by a clock enable. Second, the memory
address for the transfer needs to be supplied by the instruction. One way to
handle this is to load the address from the instruction into a memory address
register (MAR), then use a MUX to either select it or the PC. (See figure below.)

The last part of the microprocessor is the controller. This part interprets the
instructions the microprocessor receives from memory and outputs all the
required control signals. The details for this will have to wait until Project 3.

Now, consider how all these pieces play together. Suppose the PC points to an
instruction that loads a byte into the accumulator from memory address 23. First,
the PC is placed on the address and the read signal is asserted. The opcode of
the instruction is input and given to the controller. The controller sees that the
instruction is a load and that the memory address is in the second byte of the
instruction. It increments the PC* and puts it on the address bus again, this time
the results (in this case, 23) are placed in the MAR. On the next cycle, the value
in the MAR is placed on the address bus, and the contents of memory are fed to
the ALU, which has been told to pass its input directly to the accumulator. (*The
PC is actually incremented at the end of the cycle in which it is used.)

At this point you have the requirements and should understand the concept and
the algorithm. Your task is to complete the design except for the controller. First,
make a functional partition. Next, compile a list of requirements for each module.
(These lists should be fairly short except for the controller.) Third, repeat the
design process for all the modules except for the controller. If a module is simple
enough that it need not be partitioned, implement it in VHDL and create a
schematic symbol for it in ISE. Remember that each module should be simulated
separately before it is used.

MAR

PC

0

1

Address Bus
(to memory)

fetch

Internal bus Load MAR

Increment PC Load PC

Once all the modules except the controller have been tested and have schematic
symbols, connect them together in an ISE schematic. Without a controller, the
control lines will all have to come from the test fixture, so make them inputs for
now. Make use of the test fixture fragment below to test your circuit.

-- clock process
process
begin
 clk <= '0';
 wait for 10ns;
 for i in 1 to 80 loop
 clk <= not clk;
 wait for 5ns;
 end loop;
 wait;
end process;

-- Stimulus process
process
begin
 rst <= '1';

 -- PC = 00, LDI 9E
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 5ns; rst <= '0'; wait for 6ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_load;
 data <= "10011110"; wait for 10ns;

 -- PC = 02, ADDI AA (A = 48, C=1)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_add;
 data <= "10101010"; wait for 10ns;

 -- PC = 04, STO 3F
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111111"; wait for 10ns;
 -- data should be "01001000"
 rd <= '0'; wr <= '1'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "ZZZZZZZZ"; wait for 5ns;
 assert data = "01001000" report "incorrect data value"; wait for 5ns;

 -- PC = 06, ADC 3F (A = 91, C = 0)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111111"; wait for 10ns;

 rd <= '1'; wr <= '0'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_addc;
 data <= "01001000"; wait for 10ns;
 -- PC = 08, STO 3F
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111111"; wait for 10ns;
 -- data should be "10010001"
 rd <= '0'; wr <= '1'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "ZZZZZZZZ"; wait for 5ns;
 assert data = "10010001" report "incorrect data value"; wait for 5ns;

 -- PC = 0A ADCI 7B (A = 0C, C = 1)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_addc;
 data <= "01111011"; wait for 10ns;

 -- PC = 0C, XOR 3F (A = 9D, C = 1)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111111"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_xor;
 data <= "10010001"; wait for 10ns;

 -- PC = 0E, ADCI 4A (A = E8, C = 0)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_addc;
 data <= "01001010"; wait for 10ns;

 -- PC = 10, STO 3E
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111110"; wait for 10ns;
 -- data should be "11101000"
 rd <= '0'; wr <= '1'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "ZZZZZZZZ"; wait for 5ns;
 assert data = "11101000" report "incorrect data value"; wait for 5ns;

 -- PC = 12, LD 3F
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111111"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_load;
 data <= "10010001"; wait for 10ns;

 -- PC = 14, XORI FF

 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_xor;
 data <= "11111111"; wait for 10ns;

 -- PC = 16, ADD 3E (C =1)
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111110"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_add;
 data <= "11101000"; wait for 10ns;

 -- PC = 18, JC 28
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '0'; ld_pc <= '1'; ld_mar <= '0'; op <= my_hold;
 data <= "00101000"; wait for 5ns;
 assert address = x"19" report "incorrect address value"; wait for 5ns;

 -- PC = 28, ADDI 01
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_add;
 data <= "00000001"; wait for 5ns;
 assert address = x"29" report "incorrect address value"; wait for 5ns;

 -- PC = 2A, STO 3E
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '1'; op <= my_hold;
 data <= "00111110"; wait for 10ns;
 -- data should be 57
 rd <= '0'; wr <= '1'; fetch <= '0'; inc_pc <= '0'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "ZZZZZZZZ"; wait for 5ns;
 assert data = "01010111" report "incorrect data value"; wait for 5ns;

 -- PC = 2C, JMP 12
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 10ns;
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '1'; ld_mar <= '0'; op <= my_hold;
 data <= "00010010"; wait for 10ns;

 -- PC = 12
 rd <= '1'; wr <= '0'; fetch <= '1'; inc_pc <= '1'; ld_pc <= '0'; ld_mar <= '0'; op <= my_hold;
 data <= "XXXXXXXX"; wait for 5ns;
 assert address = x"12" report "incorrect address value"; wait for 5ns;
 wait;
end process;

Verify that your circuitry works on the test fixture given without reporting errors.

Turn in the following on or before the due date given on the course website.
1. The top level schematic showing the functional partition.
2. Intermediate level schematics if any exist.
3. VHDL code for each VHDL module.
4. Test fixture code for each module.
5. Simulation results for each module
6. Simulation results for the entire circuit.

Note: You do not need to turn in schematics, test
fixtures or simulation results for the ALU.

This week during your lab period, your lab instructor will be in lab to assist you
with your design. Make sure you have written all your VHDL code and
captured your schematic(s) before coming to lab.

