Chem 2990

Dr. Walker

1. Typical seawater contains 2.7 g NaCl per 100mL, or 2.7% (m/v). What is the molarity of NaCl in the ocean? The concentration of MgCl₂ is 0.054 M in seawater. How many grams of MgCl₂ are present in 25mL of seawater?

2. Copper(II) sulfate pentahydrate, CuSO₄·5H₂O, has 5 moles of water for each mole of CuSO₄ in the solid crystal. Calculate the formula weight for the pentahydrate. How many grams of CuSO₄·5H₂O should be dissolved in a volume of 500.0 mL to make 8.00mM ($8.00 \times 10^{3-}$ M) Cu²⁺?

3. Interconvert the following molarities and normalities:

\rightarrow	N HCI
\rightarrow	N H2SO4
\rightarrow	N H ₃ PO ₄
\rightarrow	N HNO3
\rightarrow	N H2CO3
\rightarrow	N citric acid
\rightarrow	N Mg(OH)2
	$\begin{array}{c} \uparrow \\ \uparrow $

4. An average human infant's blood serum contains 5-10 milliequivalents (mEq) of potassium per liter. Calculate this concentration range in both normality and ppm.

5. How many mL of H₂SO₄ solution (density = 1.1783) containing 25.0%(w/w)H₂SO₄ are required to prepare 1800 mL of 0.1000 N solution?

6. Permanganate is used as a reagent in a number of analyses. It reacts by donating five electrons to form the manganous ion:

 $5e^{-}+8H^{+}+MnO^{-}4 \rightarrow Mn^{2+}+2H_2O$

What is the normality of 0.1 M KMnO4 in this type of reaction?

7. Arsenic can be determined by a redox titration with standard iodine solution. The reaction is

$$HAsO_2 + I_2 \rightarrow H_3AsO_4 + 2H_+ + 2I^-$$

Pure As₂O₃ can be used as a primary standard in determining the concentration (normality) of the iodine solution. A sample of pure As₂O₃ weighing 4.0136 g is dissolved in 800.0 mL of solution. Calculate the normality of the solution when it is used in the reaction above. Also calculate the molarity of the solution.

Note that each arsenic atom loses two electrons in being oxidized from HAsO₂ to H₃AsO₄. Each As₂O₃ contains two arsenic atoms and hence loses four electrons during the standardization reaction:

$$As_2O_3 \rightarrow 2 HAsO_2 \rightarrow 2 H_3AsO_4 + 4e^-$$

Therefore, the equivalent weight of As₂O₃ is _____ of the molecular weight. (what fraction?)