Chem 2990

1. Typical seawater contains 2.7 g NaCl per 100 mL , or $2.7 \%(\mathrm{~m} / \mathrm{v})$. What is the molarity of NaCl in the ocean? The concentration of MgCl_{2} is 0.054 M in seawater. How many grams of MgCl_{2} are present in 25 mL of seawater?
2. Copper(II) sulfate pentahydrate, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, has 5 moles of water for each mole of CuSO_{4} in the solid crystal. Calculate the formula weight for the pentahydrate. How many grams of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ should be dissolved in a volume of 500.0 mL to make $8.00 \mathrm{mM}\left(8.00 \times 10^{3-} \mathrm{M}\right) \mathrm{Cu}^{2+}$?
3. Interconvert the following molarities and normalities:
a. $0.2 \mathrm{M} \mathrm{HCl} \quad \rightarrow \quad \mathrm{N} \mathrm{HCl}$
b. $0.6 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \quad \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$
c. $0.04 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4} \quad \rightarrow \quad \mathrm{~N} \mathrm{H}_{3} \mathrm{PO}_{4}$
d. $12 \mathrm{M} \mathrm{HNO}_{3} \quad \rightarrow \quad \mathrm{NHNO}_{3}$
e. $1 \mathrm{M} \mathrm{H}_{2} \mathrm{CO}_{3} \quad \rightarrow \quad \mathrm{NH}_{2} \mathrm{CO}_{3}$
f. 18 mM citric acid $\rightarrow \quad \mathrm{N}$ citric acid
g. $0.04 \mathrm{M} \mathrm{Mg}(\mathrm{OH})_{2} \quad \rightarrow \quad \mathrm{~N} \mathrm{Mg}(\mathrm{OH})_{2}$
4. An average human infant's blood serum contains 5-10 milliequivalents (mEq) of potassium per liter. Calculate this concentration range in both normality and ppm.
5. How many mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution (density $=1.1783$) containing $25.0 \%(w / w) \mathrm{H}_{2} \mathrm{SO}_{4}$ are required to prepare 1800 mL of 0.1000 N solution?
6. Permanganate is used as a reagent in a number of analyses. It reacts by donating five electrons to form the manganous ion:

$$
5 \mathrm{e}^{-}+8 \mathrm{H}^{+}+\mathrm{MnO}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}
$$

What is the normality of $0.1 \mathrm{M} \mathrm{KMnO}_{4}$ in this type of reaction?
7. Arsenic can be determined by a redox titration with standard iodine solution. The reaction is

$$
\mathrm{HAsO}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+2 \mathrm{H}_{+}+2 \mathrm{I}^{-}
$$

Pure $\mathrm{As}_{2} \mathrm{O}_{3}$ can be used as a primary standard in determining the concentration (normality) of the iodine solution. A sample of pure $\mathrm{As}_{2} \mathrm{O}_{3}$ weighing 4.0136 g is dissolved in 800.0 mL of solution. Calculate the normality of the solution when it is used in the reaction above. Also calculate the molarity of the solution.

Note that each arsenic atom loses two electrons in being oxidized from HAsO_{2} to $\mathrm{H}_{3} \mathrm{AsO}_{4}$. Each $\mathrm{As} 2 \mathrm{O}_{3}$ contains two arsenic atoms and hence loses four electrons during the standardization reaction:

$$
\mathrm{As}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{HAsO}_{2} \rightarrow 2 \mathrm{H}_{3} \mathrm{AsO}_{4}+4 \mathrm{e}^{-}
$$

Therefore, the equivalent weight of $\mathrm{As}_{2} \mathrm{O}_{3}$ is \qquad of the molecular weight. (what fraction?)

