1. Consider two solutions of potassium chloride (KCl): One contains 0.0085 g per liter of water, while the other contains 600 g per liter of water. Calculate the $\%(\mathrm{~m} / \mathrm{v})$ of each solution. In which one of these two solutions will the $\%(\mathrm{~m} / v)$ the most similar to its $\%(m / m)$? Explain your choice.
2. A 2.0 mL blood sample contains 0.0049 g of ethanol. Is this suspect legally drunk in the state of Utah? Show your calculations and value for $\%(\mathrm{~m} / \mathrm{v})$ for this blood sample.
3. Calculate the concentration of sodium chloride (NaCl) in ppm in each of the following aqueous solutions:
a. 37.5 mg NaCl in 21.0 kg of water
b. $2,401 \mathrm{mg} \mathrm{NaCl}$ in 15.7 g of water
c. 4.034 g NaCl in 4,000 gallons of water ($1 \mathrm{gal}=3,785 \mathrm{~g}$ water)
4. What is the concentration of each of the following solutions reported in ppb ?
a. $85.3 \mu \mathrm{~g} \mathrm{NaHSO} 44$ in 336 g water
b. 7.4 mg dioxin in 5.00 gal water
c. $5.2 \mu \mathrm{~g} \mathrm{CCl}_{4}$ in 8.34 L water
5. Fish generally need an oxygen concentration in water of at least $5 \mathrm{ppm}(\mathrm{m} / \mathrm{m})$ to survive. Will river water that contains $7 \mathrm{mg} \mathrm{O}_{2}$ per L contain sufficient oxygen to sustain fish life?
6. A typical concentration of the air pollutant sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ in urban atmospheres is $0.087 \mathrm{ppm}(\mathrm{v} / \mathrm{v})$. At this concentration, how many milliliters of SO_{2} are present in 5.00 L of air?
7. Determine how much hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$, in grams, must be present in a 375 mL sample of air to give an $\mathrm{H}_{2} \mathrm{~S}$ concentration of $9.7 \mathrm{ppb}(\mathrm{m} / \mathrm{v})$.
8. A solution of water is reported to contain a preservative at a concentration of $0.000025 \%(w / w)$. Report this concentration in both $\mathrm{ppm}(w / w)$ and $\mathrm{ppb}(w / w)$.
9. Suppose that 1 ppb is one second. How much time would be needed (months, years, etc.) so that one second represented one part-per-billion in this time period.
