Class Description and Objectives:
The evolution and practice of Western science from origins to contemporary ideas. The goal of this course is to encourage the student to think about science from an historical perspective, and to appreciate how science can inform the study of history.

Participation in the class and class discussions are expected.

Grading Policies:
Grades will be determined on the following basis:

- Quizzes 50%
- Time-line assignment 20%
- Book Report Presentation 20%
- Class participation 10%

Grades: A: 90 - 100% B: 80 - 89% C: 70 - 79% D: 60 - 69% E: 0 - 59%
(Grades at the high or low ends of these ranges will earn plus and minus grades.)

Quizzes: There will a quiz every day at the beginning of class. Each quiz will be based on the readings that you were given for that day, or will be given on the content of the previous class’s presentations. You may miss ONE quiz; if you take the extra quiz, it will count as extra credit.

Students with Disabilities:
Any student requiring accommodations or services due to a disability must contact Services for Students with Disabilities (SSD) in Room 181 of the Student Service Center. SSD can also arrange to provide materials (including this syllabus) in alternative formats if necessary.
Timeline Exercise:
Objective: Review of key events of the history of science; gain an increased understanding of historical perspective.

Make a timeline of what you see as the 30 most important events in the history of science from prehistory to the present. Use our textbooks or an encyclopedia or the Internet to find your information. For each entry, include a 2-3 sentence justification for your choice. Timeline MUST be typed.

Grading will be based on three criteria:
1) Chronologically identify 30 significant events in the history of science and/or history of technology. Include two or three sentences with each event describing the nature of the event and why it was important.
2) Neatness and presentation.
3) Grammatical or mechanical errors.

Cheating Policy: Cheating and deceit are not accepted at Weber State University. Cheating on an quiz or assignment, or turning in someone else's work as your own, will result in an E for the class. You may work together on your assignments and papers, but you must turn in your own work. If you quote from a book, article, or web site, you must properly quote and cite your work. Avoid even the appearance of cheating or plagiarism.

Cell Phones, Texting, and Laptops:
Put your cell phones on vibrate. Try to avoid leaving class to take a call, but an occasional emergency is understandable. There will be NO texting in this class. Laptops or other personal digital tools may be used to take notes or look up material relevant to class discussions. No other uses of laptops will be tolerated.

Campus Closure:
In the event of an extended campus closure, please look at your Weber State email in order for instructions on how we will continue the class via email and the online course system.
Book Report:
Each student must select a book that falls into one of the following categories:
- the history of science
- the history of medicine
- history of technology
- the philosophy of science (including ethical issues)
- the philosophy of medicine (including ethical issues)

Attached is a list of suggested books. Other books may be used by the student, subject to approval by the instructor. On an assigned date, the student will give a ten minute in-class presentation on their book. No book report will not go beyond fifteen minutes. Describe the content of the book and explain how it fits within the history and philosophy of science. The purpose of this exercise is to introduce the class to the variety of literature available on the history and philosophy of science.

Book Report Suggestions:
These are suggestions on how to prepare your book report.
- Look up some reviews of the book, as well as reading it, since the reviews can help you place the book in a larger context.
- Ask yourself these questions and answer them during the presentation:
 - Who is the author and why are they qualified to write this book?
 - What is the book about and when was it published?
 - Why was this book written?
 - Summarize the story being told or the arguments being made in the book.
 - What is the main point the author is trying to make?
 - What perspective is the author trying to represent in writing this text?

Scoring rubric:
Read book: Gave a clear description of text in its entirety. (40 points)
Synthesis: Understood bigger picture of text, connected small tidbits together and within larger themes. (20 points)
Presentation: Your manner was clear, organized, and prepared. Could answer questions. (35 points)
Personal insight: Made personal connections to book, could see implications of text. (5 points)
<table>
<thead>
<tr>
<th>Week</th>
<th>Wednesday</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 4</td>
<td>Introduction to class; What is Science; Everyday Distances and Astronomical Distances (no readings)</td>
</tr>
<tr>
<td>January 11</td>
<td>Readings: McClellan and Dorn, Introduction, Chapters 1-3</td>
</tr>
<tr>
<td>January 18</td>
<td>Readings: McClellan and Dorn, Chapters 4-6</td>
</tr>
<tr>
<td>January 25</td>
<td>Readings: McClellan and Dorn, Chapters 7-9</td>
</tr>
<tr>
<td>February 1</td>
<td>Readings: McClellan and Dorn, Chapters 10-12</td>
</tr>
<tr>
<td>February 8</td>
<td>Readings: McClellan and Dorn, Chapters 13-15</td>
</tr>
<tr>
<td>February 15</td>
<td>Readings: McClellan and Dorn, Chapter 16 Students 1-3 presentations</td>
</tr>
<tr>
<td>February 22</td>
<td>Readings: McClellan and Dorn, Chapter 17 Readings: Ferris, Chapters 1-2 Students 4-6 presentations</td>
</tr>
<tr>
<td>February 29</td>
<td>Readings: McClellan and Dorn, Chapter 18 Readings: Ferris, Chapters 3-4 Students 7-9 presentations</td>
</tr>
<tr>
<td>March 7</td>
<td>Readings: McClellan and Dorn, Chapter 19 Readings: Ferris, Chapters 5-6 Students 10-12 presentations</td>
</tr>
<tr>
<td>March 14</td>
<td>Spring break</td>
</tr>
<tr>
<td>March 21</td>
<td>Readings: McClellan and Dorn, Chapter 20 and Conclusion Readings: Ferris, Chapters 7-8 Students 13-15 presentations</td>
</tr>
<tr>
<td>March 28</td>
<td>Guest Lecture (no readings)ayout (no readings)</td>
</tr>
<tr>
<td></td>
<td>Timeline assignment due</td>
</tr>
<tr>
<td>April 4</td>
<td>Readings: Ferris, Chapters 9-10 Students 16-18 presentations</td>
</tr>
<tr>
<td>April 11</td>
<td>Readings: Ferris, Chapters 11-12 Students 19-22 presentations</td>
</tr>
<tr>
<td>April 18</td>
<td>NO Final Exam</td>
</tr>
</tbody>
</table>
Some Suggested Books for Class Presentation

Maitland A. Edey and Donald C. Johanson, *Blueprints: Solving the Mystery of Evolution* (1990)

David M. Friedman, *The Immortalists: Charles Lindbergh, Dr. Alexis Carrel, and Their Daring Quest to Live Forever* (2007)

Marcia Bartusiak, *The Day We Found the Universe* (Panthean, 2009).

Selected science fiction novels.