

III. MEASUREMENT ISSSUES B. Measurement Validity

- The operational definition of terms marks the first decision which you have make about the your research.
- It is also the first issue which can be questioned in any research paper you read.
 - The two questions that can be posed about operational definitions are measurement <u>validity</u> and <u>reliability</u>.

III. MEASUREMENT ISSSUES B. Measurement Validity

 <u>Measurement Validity</u>: A measurement is valid when it is measuring what it claims to be measuring (truthfulness).

Concept or Term

Measurement

III. MEASUREMENT ISSSUES B. Measurement Validity

- Establishing the validity of a measure takes multiple studies examining different aspects of the measure.
 - 1. Criterion-Related (or Concurrent) Validity: Does the measure correlate with an established measure of the phenomenon of interest?
 - **2. Predictive Validity**: Does the measure predict future behavior?
 - **3. Face Validity**: Does the measure look like one that does what it is supposed to do?
 - **4. Construct Validity**: Do the results from the measure fit with theoretical expectations?

III. MEASUREMENT ISSSUES C. Measurement Reliability

 Measurement Reliability: A measurement is reliable when it is consistent across experimenters and/or time.
 Concept or Term Consistency?
 Measurement

III. MEASUREMENT ISSSUES C. Measurement Reliability

- Reliability is about the whether the measurement device produces similar results when repeated measurements are made under identical conditions.
 - A reliable measurement is consistent over multiple <u>observers</u> (measures of **inter-rater reliability**)
 - A reliable measurement is consistent over <u>time</u>. (measures of **internal consistency**, **test-retest reliability**, or split-half reliability)

III. MEASUREMENT ISSSUES C. Measurement Reliability

- Measures can be reliable but invalid:
 - The "Draw-A-Person" test is supposed to be a measure of IQ
- Measures can not be unreliable but valid.
 - How can an unreliable measure ever have validity?
 Throw away a ruler that gives you a different score on each measurement of the same object.
- One critical issue in reading a research paper is the status of the measurement devices
 - Is there evidence that it they are reliable and valid?

III. MEASUREMENT ISSSUES D. Measurement Scales

- Once variables are operationalized, their scaling properties can be identified
- Measurement Scales: The type of information yielded by a measurement operation. The mathematical properties of the information yielded by the measurement device
 - There are 4 types of measurement scales (NOIR)
 - Nominal
 - Ordinal
 - Interval
 - **R**atio

III. MEASUREMENT ISSSUES D. Measurement Scales

- **Nominal**: Information about whether two values are the same or different (X is different from Y but the same as Z):
- Judgments of: Same/Different.
- Sex, Blue/Not Blue Eye Color, Higher/Lower Achievers.

III. MEASUREMENT ISSSUES D. Measurement Scales

- **Ordinal**: Information about whether two values are different and the direction of difference (better, higher, greater, etc.)
 - e.g.: X is greater than y, but less than z:
- Judgments of: Same/Different; Greater than/Less than.
- Stages, Ranks, Multiple Categorical types

III. MEASUREMENT ISSSUES D. Measurement Scales

- Interval: Information about the units that mark the distance between two values. (The difference between X and Y is 6 units, exactly the same as the difference between Y and Z)
- Judgments of: Same/Different, Greater than/Less Than, Differences are the same/Differences are different
- Temperature, IQ.

III. MEASUREMENT ISSSUES D. Measurement Scales

- Ratio: Information about the precise relation between two values by their distance from a fix zero-point. (X is exactly twice as much as y)
- Judgments of: Same/Different, Greater than/Less Than, Differences are the same/Differences are different, Quantification of the difference.
- Weight, Length, Time.

III. MEASUREMENT ISSSUES D. Measurement Scales

- The best scale to use depends on...
 - How much information is needed.
 - Statistical tests to be used.
 - Tests like ANOVA or T-Tests must use interval or ratio scales but Chi-Square might best be used on nominal and ordinal scales.
 - Ecological validity of the assessment.
 - Which scale corresponds to the real life situations of movie judgments: Nominal, Ordinal, Interval or Ratio?
 - Psychological reality of the scale.
 - Preferences for justification statements: Ordinal (rank order), Interval (rating).

III. MEASUREMENT ISSSUES E. Anticipating and Fixing Problems

- Even with a very good operational definition of a variable, measurement issues may pose a problem, reflecting inappropriate distinctions
 - **Insensitivity**: Insensitive measurement devices produce range effects which reflect the fact that the limits of the measurement device are encountered too frequently.
 - Floor effects: Too many scores are the lower limitCeiling effects: Too many scores are at the upper limit.
 - **Oversensitivity**: An overly sensitive measuring device produce outliers.

III. MEASUREMENT ISSSUES E. Anticipating and Fixing Problems

- Even with a very good operational definition of a variable, the process of measuring may pose problems.
- **Reactivity:** The effect on measurement of the act of measuring.
 - **Demand characteristics**: Inadvertent cues to the purpose of the study.
 - Effect of guns on aggression is studied by placing a gun in the research room in one condition. The unusual sight of a gun in a research room will cause participants to think about the the purpose of the research.

III. MEASUREMENT ISSSUES E. Anticipating and Fixing Problems

- Attitude of subjects: Participants' predispositions towards the research
 - Cooperative: Try to please; Negative: Participant is difficult or refuses to understand or play by the rules; Defensive: Participant presents self in the best possible light -- tries to smell like a rose.
- **Experimenter bias**: Experimenters' behaviors that influence participants' specific responses.

Nodding to correct answers by not to incorrect ones.

• Expectancy effects: Experimenters' attitudes about the capabilities of participants affects their performance (Rosenthal)

III. MEASUREMENT ISSSUES E. Anticipating and Fixing Problems

Reducing measurement problems

Pilot studies

Allows the researcher to check procedures and results

Manipulation checks

- Interviews and other techniques to assess whether participants experience what they were supposed to.
- Reduce Bias
 - Single Blind: Experimenter ignorant of the conditions
 - Double Blind: Experimenter and participant ignorant of the conditions.
- Automate procedures to reduce expectancy.