

I. INTRODUCTION A. Experimental vs. Correlational research For the most part we have been discussing

- For the most part we have been discussing Experimental Designs
- Characteristics of experimental designs?
 - Experimental control over distribution of IV
 - Experimental control over EV
 - Control over initial differences between participants
 Random assignment
 - Within subjects design
- The idea is to see if groups who are initially equal can be made to be different

I. INTRODUCTION

- A. Experimental vs. Correlational research
- Sometimes you can not exert experimental control over initial differences
 - 1. You can study a certain group of people without comparison to others (Non-experimental research).
 - Only 1 level of an IV. How does a creative person work?
 - 2. Compare groups who had different experiences but can't be sure that they were initially the same (Quasi-experimental research)
 - Kids who go or do not go to day care

I. INTRODUCTION

- A. Experimental vs. Correlational research
- 3. Compare groups who initially differ and see whether their initial difference is also differentially associated with other characteristics (Correlational Research)
 - Do creative people differ from non creative people?
- 4. Assess developmental changes in a group of people (Developmental designs)
 - Are there developmental changes in creativity?

I. INTRODUCTION

- B. Creative Inferencing and Beyond
- Because such research designs lack control, drawing conclusions from data require creative inferences.
 - There are assumptions that allow you to draw conclusions.
 - Most of the assumptions bear on triangulating on a defensible claim.
 - Comparing results of different studies
 - Strong argumentation dismissing other factors.
 - Consider how you would test the value of a Weber State University education?

II Designs

- A. Non-experimental
- Sometimes you want to examine behavior which has been expressed, but obviously you can not control the conditions under which it was produced.
- I. Case History
 - Case studies: A single subject provided a basis for demonstrating psychoanalytic theory.
 - Freud used case studies as a primory form of evidence
 - T1 → D.
 - But Perhaps T2 \rightarrow D.

II Designs

- A. Non-experimental
- 2. Archival Research
- Sometime you want to do research by getting archival data
 - Details about sex offenders
 - Recognize that such archival permission is difficult to get these days.
 - The logic is this case is that hypotheses can be postdicted, (making judgments about behavior which as already occurred) rather than predicted.

II Designs

- A. Non-experimental
- **3.** Content Analysis
- Sometimes you might want to analyze the artifacts (written or spoken record) of a person after the fact.
- Research on gender and language is an example.
- The coding of the artifacts must be:
 - 1. Objective (rules for analysis)
 - 2. Systematic (included all relevant information)
 - Generality (your results should fit within a theoretical model which allows for its generality)

A. Non-experimental

4. Limits of Non-experimental Research

- These designs are all non experimental because there may be no comparison groups at all.
- As there is no comparison group, there is no experimental control
- As a result no causal inferences can be made from data in any of these design.

II Designs

B. Observational

- In another style of research you can examine ongoing behavior by observing it.
- Observation is a research technique which can be used with experimental or non-experimental designs.
 - BEHAVIORAL CATEGORIES are developed by which the "behavioral stream" is coded.
 - The behavioral categories tells you what to code and how to code it.

II Designs

B. Observational

- **Quantifying behavior:** We can code behavior (time working on a project) in three ways
 - **Frequency**: Code particular types of behavior for how frequently they occur.
 - Frequency of look away behavior. (frequency)
 - Duration: Code the length of time a behavior lasts.Time on task. (temporal measure)
 - **Intervals**: You sample specific behaviors in discrete time periods.
 - Time spent working on a topic, in each 10 sec. interval (rate = frequency/intervals)

II Designs

- Quantifying behavior often isolates it from the context of other actions.
- An alternative is to analyze behavioral sequences which examines behavioral interactions between people
 - Interactions between child and teacher
 - Parent-child interactions in assessing the growth of pragmatics.
- Better to record behavioral sequences than just isolated behavioral events

B. Observational

- Once you decide what behavior to sample, you have to decide how to sample the behavior
- To do so you must decide when to sample behavior
 - Time sampling : Observe group for a specific period of time. Observe/Record. Good for continuous behavior.
 - Individual sampling: Observe particular individual (study whole context of behavior)
 - Event sampling: Observe only a particular behavior of interest

II Designs

B. Observational

Observational Techniques

- 1. Naturalistic observation
- Non-participant observers assess participants in their natural context.
- Used in in many different research contexts
 - Child and Family
 - Psychology
 - Biology: Ethology

II Designs

- B. Observational
- Unobtrusive observations: Observations which do not alter the behavior in the natural context.
- Techniques to promote unobtrusive observations:Video
 - One-way mirrors.
 - Habituating participants to observers

II Designs

- **2.** Ethnography and Participant Observation
- The observer becomes art of the natural environment to better record behavior:
- The researcher can be "Surreptitious Participant" who is "under cover"
 - Studies of 'high school" by researchers who went under cover. My be ethically questionable
- The researcher can be "Non-surreptitious participant" by making clear her role.
 - Anthropologist
 - Ethologist: Jane Goodall.

- 4. Reliability Issues
- Reliability: Does the measurement device produce similar results when repeated measurements are made under identical conditions.
 - A measurement is reliable if it is consistent measurements stay the same across experimenters and/or over time.
- Reliability over raters or over time

1	II Designs B. Observational						
	 Multiple Observers: Measure inter-rater reliability: 						
	• 1. Percentage agreement: What percentage of time did raters agree?						
		Yes	No				
	Yes	6	1	7			
1	No	1	2	3			
		7	3	10			
	Agre	ements/	observatio	n x 100 =	80%		

	II Designs						
	 B. Observational Problems Capitalizes on frequency of occurrence If behavior is very infrequent, the percent agreement will be very high 						
	Yes	No					
	Yes 1	1	2				
	No 1	97	98				
	2	98	10				
Agreements/observation x $100 = 98\%$							

B. Observational

- At least for inter-rater reliability there seems to be a ordering of techniques:
 - 1. Most conservative: Cohen's Kappa
 - 2. Inter-rater Reliability
 - 3. Least conservative: Person Correlation

II Designs

- Extraneous Variables
 - Observer bias:
 - observations are influenced by knowledge of hypothesis
 - Keep the observer masked or blind to the hypothesis
 - Interpretation vs. observation
 - Describing behavior without making reference to intentions is difficult

- C. Exerting quasi-experimental control
- In may studies, there seems to be experimental control but there really is not.
 - The effects of daycare: No random assignment of subject to groups
 - Rather, there is a subject assignment to treatment even if those on waiting lists are used.
- Quasi-experimental designs are ones which seem like experimental designs since there appears to be experimental control over distribution of IV.

II Designs

C. Exerting quasi-experimental control

I. Time Series

- O1 O2 Treatment O3 O4
- The treatment can be assessed by the difference in scores at o1 and O2 compared to O3 and O4. But without a control group, it is hard to make valid conclusions.
- 2. Interrupted time series
 - O1 O2 Treatment O3 O4
 - Where treatment is a natural occurrence (like an earthquake)

II Designs

- C. Exerting quasi-experimental control
- **3. Equivalent time series**
 - Treatment O1 Treatment O2 Treatment O3
 - IV is repeatedly given and the treatment is temporary or transitory
- 4. Nonequivalent control group
- Experimental: O1 O2 Treatment O3 O4
- Control: O1 O2 No Treatment O3 O4
- Controls some of the internal validity problems associated with the design (but not sampling bias)

II Designs

- D. Developmental Designs
- Assumptions of Developmental Designs
 - Usually developmental research involves comparisons between children of different ages on some DV.
 - What kind of IV is age?
 - True IV?
 - No, age is not manipulated and there is no random assignment of subjects to groups.
 - Anyway age doe not cause change in behavior.
 - Age indexes an interrelated set biological, social, cognitive variables

- D. Developmental Designs
- Age Comparisons as a subject IV
 - But is age a subject IV-- a characteristic or trait that varies consistently across subjects?
 - Age is a special type of subject IV. Compare Age and Sex.
 - Similarity: Properties of participants which are associated with other variables.
 - Difference: Only with age do you assume that variable level 1 has been will be the same as participants in variable level 2.

II Designs

- D. Developmental Designs
- Make two assumptions
 - Assume that subjects of older age has had characteristics of younger subjects
 - Assume that subjects of younger age will have characteristics of older subjects and vise-versa.
 - What is interesting about differences between 3- and 7year-olds is that the 3s will look like the 7s in 4 years and 4 years ago, the 7 looked like the 3s.
 - NO SUCH ASSUMPTION WITH SEX: Females will never assumed to look like males and males never assumed to look like females.

II Designs

- D. Developmental Designs
- Age comparison involves examining INTRA-INDIVIDUAL CHANGES rather than INTER-INDIVIDUAL DIFFERENCES
 - Intra-individual Changes: Changes within a person
 - Inter-individual Differences: Differences between people.
- Age-comparisons are neither:
 - causal relations between a true IV (age) and a DV
 - correlations between a stable subject variable IV (age) and DV.

II Designs

- D. Developmental Designs
- **A. Cross-sectional Design**: Comparison of groups of participants of different ages.
 - Design typically used in developmental psychology.
- Problems
 - 1. Selection Biases
 - 2. Selective mortality
 - 3. Confounding with education, cohort
 - 4. Instrumentation: Measurement equivalence

- D. Developmental Designs
- **B. Longitudinal Design:** Comparison of the same participants over time
- Problems
 - 1. Repeated testing
 - 2. Changing instrumentation or fidelity over time
 - 3. Reactivity of being in a study
 - 4. Selective mortality
 - Confounded w/ time of testing: Dangers in generalizing to those in other epochs.

II Designs D. Developmental Designs Developmental Designs • C. Cohort sequential: Multiple longitudinal studies with groups of staggered aged. Tested in year 93 Born 73 83 03 13 53 20 30 40 50 60 ← Longitudinal 20 63 30 **40** 50 73 20 30 40 83 Cross-sectional $\rightarrow 20$ 30