Exam #2 Chem 2310 - Organic I Chemistry Dr. Davies Tuesday October 18, 2005

Ch. 4 Study of Chemical Reactions

Ch. 5 Stereochemistry

Ch. 6 Alkyl halides: Substitution / Elimination Reactions

Key Name:

My signature indicates that I have neither given nor received any unauthorized assistance on this exam.

Signature:

C

<u>Tips</u>

Look over the whole exam first.

Check the page numbers to make sure you are not missing any pages. If you are missing a page, trade for another exam at the desk.

Read questions thoroughly.

Do the problems you know first.

Show all your work.

Relax, and just do the best you can.

I. Theory

- 1. Based upon the energy diagram shown below, circle all statements that must be true. (3 points)
 - a) The ΔS° for the reaction is positive.
 - b) The ΔG° for the reaction is negative.
 - The ΔS° for the reaction is negative.
 - The K_{eq} for the reaction is less than one.
 - e) The rate equation is first order.

2. Use the table of bond dissociation energies on the last page of the exam to calculate the overall enthalpy of the reaction below in kcal/mol. Then state whether the reaction is endothermic or exothermic. (5 points)

 $3^{\circ}C-H$ $(CH_3)_3CH$ + I_2 · $(CH_3)_3CI$ + HI+ $Q|\kappa_{co}/mol$ + $36\kappa_{co}/mol$ - $50\kappa_{co}/mol$ - $71\kappa_{ca}/mol$ 3°(-I (+6 kcal/mol, endothermic

Use the following information to answer questions 3 and 4. Consider the three-step mechanism for the reaction of A through intermediates B and C to product D shown below:

 $\begin{array}{lll} A \rightarrow B & E_a = +9 \; kcal \; / \; mol, \; \Delta H^o = +6 \; kcal \; / \; mol \\ B \rightarrow C & E_a = +5 \; kcal \; / \; mol, \; \Delta H^o = -2 \; kcal \; / \; mol \\ C \rightarrow D & E_a = +3 \; kcal \; / \; mol, \; \Delta H^o = \; -7 \; kcal \; / \; mol \end{array}$

3. Draw an energy diagram for the reaction described above. (3 points)

4. Which step is the rate determining step? (2 points)

a) $A \rightarrow B$ (b) $B \rightarrow C$ c) $C \rightarrow D$ d) insufficient information

wf. catalyst Page 2 of 7 How does a catalyst accelerate a reaction? (2 points) d) It destabilizes the transition state. a) It stabilizes the reactant. It destabilizes the reactant. Ipt b) e) It stabilizes the intermediate. It stabilizes the transition state. c) f) It destabilizes the intermediate. Which of the following is a carbene? (2 points) 6. b) CH_3CH_2 c) :CCl₂ a) CH₂=CHO⁻ d) $CH_3CH_2^+$ e) NCO⁻ 7. If the ratio of 1-bromobutane to 2-bromobutane formed from free radical bromination of n-butane is 7:93, what is the relative reactivity of 2° vs 1° hydrogens in this system? Show all of your work for full credit. (5 points) select = rat x prob. 93/4 = 66=23.3/17 = 20Rel. Kx a= 76=1.17_ 8. Identify the following structures as chiral or achiral. Circle any meso structures. (8 points) CH₃CH₂CH(OH)CH₂CH₃ chira achinal-plane of symm. 9. What are stereoisomers? (2 points) p.167 (compounds my the same molect. formula & the same connectivity but different spatial arrangements Circle all statements that are true of chloroform. (3 points) 10. Chloroform has a density less than 1.0 g/mL.(H₂()) No It is a suspected carcinogen. Chloroform was once used as an anesthetic. Its trade name is freon. No

10 10

11. The following structure has been found to have moderate activity against hepatitis C, a disease that damages the liver (J. Med. Chem. 2005, 6454). Label the configuration of each chiral center as R or S. (8 points)

12. A new isolated natural product was found to be optically active. When 2.0 g of the pure substance was dissolved in 10 mL of ethanol and placed in a 50 cm sample tube an optical rotation of $+2.57^{\circ}$ was observed. What is the specific rotation of this natural product? Show all of your work for full credit! (4 points)

$$[d] = \frac{d}{c \cdot l} = \frac{2.57^{\circ}}{\left(\frac{7.09}{10 \text{ mL}}\right)(5 \text{ dm})} = (2.57^{\circ}) \qquad 10 \text{ cm} = 1 \text{ d}$$

13. Translate the following structure to a Fischer projection and then draw its enantiomer in a Newman projection siting down the C2-C3 bond. (6 points)

III. Reactions

5. Predict all possible elimination products and circle the structure of the major product. Include any relevant stereochemistry. (6 points)

- 1. Draw the structure of 5 isomers having a molecular formula of $C_7H_{13}Br$ that will

You received ______ points out of 100 points possible. To check your overall performance in lecture see <u>http://vista.weber.edu/</u>

Page 7 of 7

		A:B —	ic Cleavages → A· + ·B		
	Bond-Dissociation Enthalpy			Bond-Dissociation Enthalpy	
Bond	kJ/mol	kcal/mol	Bond	kJ/mol	kcal/m
H - X bonds and $X - X$ bon	ds		Bonds to secondary carbons		
н—н	435	104	(CH ₂) ₂ CH—H	207	05
D—D	444	106	$(CH_{3})_{2}CH - F$	391	106
FF	159	38	$(CH_{2})_{2}CH - CI$	335	201
CI-CI	242	58	(CH ₃) ₂ CH-Br	285	68
Br—Br	192	46	$(CH_3)_2CH-I$	200	51
I—I	151	36	(CH ₃) ₂ CH-OH	381	01
H—F	569	136	5/2	001	
H-CI	431	103	Bonds to tertiary carbons		
H—Br	. 368	88	$-(CH_3)_3C - H$	381	oi .
H—I	297	71	$(CH_1)_3C - F$	444	106
но—н	498	119	$(CH_3)_3C - CI$	331	79
HO-OH	213	51	$(CH_3)_3C - Br$	272	65
Aethyl bonds			$(CH_3)_3C - 1$	209	50
			(CH ₃) ₃ C-OH	381	91
CH ₃ —H	435	104			
	456	109	Other C—H bonds		
	351	84	$PhCH_2 - H$ (benzylic)	356	85
	293	70	$CH_2 = CHCH_2 - H$ (allylic)	364	87
	234	56	$CH_2 = CH - H (vinyl)$	464	111
Ch ₃ -OH	381	91	Ph—H (aromatic)	473	113
onds to primary carbons			C Chanda		
CH ₁ CH ₂ —H	410	90	CC bonds		
CH ₂ CH ₂ -F	410		$CH_3 - CH_3$	368	88
CH ₂ CH ₂ —Cl	330	£17 	CH ₃ CH ₂ —CH ₃	356	85
CH ₂ CH ₂ —Br	285	68	$CH_3CH_2 - CH_2CH_3$	343	82
CH ₃ CH ₂ —I	203	53	$(CH_3)_2CH - CH_3$	351	84
CH ₃ CH ₂ -OH	381	91 91	$(CH_3)_3C - CH_3$	339	8)
CH ₁ CH ₂ CH ₂ —H	410	98			
CH ₃ CH ₂ CH ₂ -F	448	107			
CH ₃ CH ₂ CH ₂ Cl	339	81			
CH ₃ CH ₂ CH ₂ —Br	285	68			
CH3CH2CH2-I	222	53			
CH ₃ CH ₂ CH ₂ —OH	381	91			