Taxonomy and Cell Structure/Function
Evidence of Life

- Stromatolites
- Isotope ratios
 - Limestone depleted of $^{12}\text{CO}_2$
- Microfossils

Filamentous Prokaryotes

Cyanobacteria

Algae
Microbial Taxonomy

- Hard to classify microbial species
 - Asexual reproduction
 - Horizontal gene transfer
 - Some genes can be copied to a recipient bacterium
 - Not entire genome
 - Sometimes transfers occur between species
 - Example: pathogenicity islands
 - Large set of genes present in some strains of a species
 - Absent in other strains
Taxonomic Identification

- Use metabolic, morphologic properties
 - Reflect genetic background
 - Growth substrates
 - Biochemical structure
 - Cell envelope—Gram stain

- Rapid pathogen identification
 - Multiple color tests
 - Results scored to give most probable species

+|− + + +|− − − + + − +|− − +
Microbial Divergence

- Mutation naturally occurs at each division
 - One mistake in a million base pairs
 - Higher if a mutagen is present
- Very rare mutations are favorable
 - Allow better survival of cell
 - Faster growth, higher reproduction rate
 - Or allow cell to attack competitors
 - Antibiotics made by bacteria
Three Domains of Life

Carl Woese
Molecular Clocks

- Assume mutations accumulate steadily
 - Constant rate per generation
- Sequence differences are proportional to number of generations since divergence
- Best to compare conserved sequences
 - Gene for small subunit rRNA
- Adjustments to rate
 - Conservation of sequences needed for function
Phylogenetic Trees

- Relate differences between sequences
 - To time since species divergence
- Assume fewest possible changes
 - “Maximum parsimony”

- Test trees via probability
 - “Maximum likelihood”
 - Tree most likely to give the observed sequences
Figure 3.53

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Intermembrane space
Crista
Matrix
Inner membrane
Outer membrane

(b) © Keith Porter/Photo Researchers, Inc.

Scale: 0.1 µm
Figure 3.23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Flagellum
Pili

(b) 0.5 µm

Chromosome (DNA)
Ribosomes
Cytoplasm
Nucleoid
Cytoplasmic membrane
Cell wall
Capsule

The Bacterial Cell

- Cytoplasm surrounded by envelope
 - Cytoplasm contains DNA in nucleoid
- Envelope has lipid membrane boundary
 - Plus structural cell wall
Cell Membranes

- Made of lipid bilayer
 - Double layer of phospholipids
- Separate cytoplasm from outside world
- Proteins embedded in membrane
 - Anchor membranes to envelope
 - Sense the outside world
 - Transport materials into cell
Cell Transport

- Proton pumps push protons out of cell
 - Generates proton-motive force (PMF)
 - Osmotic force tries to push protons back into cell
 - Electrical force tries to push protons back into cell

- PMF is used to create ATP
 - ATP synthase uses PMF for energy
Cell Transport

- Transporters pass material into/out of cell
 - Passive transport follows gradient of material
- Pumps use energy
 - ATP or PMF
 - Move material against their gradient
- Passive diffusion lets small molecules into cell
The Bacterial Cell Wall

- Sacculus made of peptidoglycan
 - Sugar chains wrapped in circles around cell
 - “glyco” = “sweet”
 - Sugar chains linked to each other by short polymers of amino acids
 - amino acid = “peptide”

- polysaccharide (sugar) chains
- peptide (amino acid) crosslinks
The Gram-Positive Envelope

- Capsule (not all species)
 - Polysaccharide
- S Layer (not all species)
 - Made of protein
- Thick cell wall
 - 9-amino acid crosslinks in peptidoglycan
 - Teichoic acids for strength
- Thin periplasm
- Plasma membrane
The Gram-Negative Envelope

- Capsule (not all species)
 - Polysaccharide
- Outer Membrane
 - Lipopolysaccharide
 - In outer leaflet only
- Thin cell wall
 - 4-amino acid crosslinks in peptidoglycan
- Thick periplasm
- Plasma membrane
The Bacterial Nucleoid

- Single loop of double-stranded DNA
 - Single molecule of DNA
 - ~4×10^6 bp in many bacteria
 - Compacted via supercoiling
- Attached to cell envelope
 - No membrane separates DNA from cytoplasm
- Replicates once for each cell division
Photosynthesis

- Cyanobacteria have thylakoids
 - Extensively folded inner membrane
 - Contain chlorophyll
 - Ancestors of chloroplasts
- Carboxysomes fix carbon
 - Use energy to make sugar
- Other bacterial photosynthetic pigments
 - Purple membranes in some
 - Phycobilisome proteins collect light energy
Storage Granules

- Intracellular deposits of material
 - Glycogen (sugar) for energy
 - PHB (fatty acid polymer) for energy
 - Polyphosphate to store material
 - Sulfur for disposal

Iridescent sulfur granules

Carboxysomes, lipid energy-storage granules
Cell Attachment

- Fimbriae and pili attach cells to surfaces
 - Thin filaments of protein “pilin”
- Stalks attach cells to surfaces
 - Extension of cell cytoplasm

- Secretion Systems attach cells to prey
 - Six types
 - Sex pilus is similar to type IV secretion system
 - Essential for bacterial pathogenicity
Cell Motility

- **Flagella**
 - Long, helical protein filaments
 - Attached at ends, or over whole cell

- **Flagella rotate to propel cell**
 - Base resembles type III secretion system
 - Proton passage drives rotation
 - Clockwise or counterclockwise
Chemotaxis

- Attractants cause counterclockwise rotation
 - Flagella bundle together
 - Push cell forward
 - “Run”

- Repellents cause clockwise rotation
 - Flagella fly apart together
 - “Tumble” = change of direction
Chemotaxis

- Runs + tumbles cause “random walk”
 - Receptors detect attractant concentrations
 - Sugars, amino acids
 - Attractant concentration increases and prolongs run
 - Biases random walk
 - Net movement of bacteria toward attractants