Observing Microbes

- Human eyes have limited resolution
 - 150 µm (1/7 mm, 1/200 inch)
- Microscope needed to see smaller objects
 - Eukaryotic microbes
 - Protozoa, algae, fungi
 - 10–100 µm
 - Prokaryotes
 - Bacteria, Archaea
 - 0.4–10 µm
Bacterial Shapes

- Cocci = spheres
 - in bunches
 - in chains
 - quartets

- Bacilli = sticks, rods
 - alone
 - in chains

- Vibrios = bent rods

- Irregular

Spiral
Staining

- Fix cells to hold in position
- Stain with dye
 - Reacts with chemical structure of organism
 - Gram stain reacts with thick cell wall
 - Increases absorbance
 - Easier to find in low-contrast conditions
Bright-Field Microscopy

- Increasing resolution
 - Multiple lenses
 - Correct each other's aberrations
 - Compound microscope
 - Need to focus two lenses
 - Objective
 - Condenser
Bright-Field Microscopy

- Increasing resolution
 - Use shorter wavelength light
 - UV, X-rays
 - But images aren’t visible to human eye
 - Lessen contrast
 - Lenses with higher contrast give less resolution
 - But need enough contrast to see object
 - Immersion oil
 - Collects more light from specimen
 - Wider lens closer to specimen
 - Higher numerical aperture (NA)
 - $NA = n \sin \theta$
Dark-Field Microscopy

- Light shines at oblique angle
 - Only light scattered by sample reaches objective
 - With enough light, some bounces off object
 - Even objects smaller than wavelength of light
- Makes visible objects below resolution limit
 - Flagella, very thin bacteria
Phase-Contrast Microscopy

- Light passes through and around sample
- Light through sample is refracted
 - Changes phase of light
 - Light waves out of phase cancel
- Sample appears dark against light background
 - Shows internal organelles of eukaryotes
Differential Interference Contrast (DIC) Microscopy

- Polarized light passes through specimen
 - Sample boundaries bend light
 - Second polarized lens blocks light
 - Bent light affects brighter or darker than background

Head of microscopic worm (C. elegans)

Bacterium

Pharynx (mouth)

Cell nuclei

10 µm
Fluorescence Microscopy

- Fluorophores absorb high-energy light
 - Short wavelength
- Emit lower-energy light
 - Longer wavelength
- Label molecules of interest in cell
 - Marker for position of molecules within cell
Fluorescently Labeling Molecules

- Attach directly to some molecules
 - DAPI binds DNA

- Attach labeled antibody to molecules
 - Antibody binds specific molecules
 - Fluor covalently bound to antibody
Electron Microscopy

- Electrons behave like light waves
 - Very high frequency
 - Allows very great resolution
 - A few nanometers
- Sample must absorb electrons
 - Coated with heavy metal
 - Electron beam and sample are in a vacuum
 - Lenses are magnetic fields

Electron source (tungsten filament)
Condenser lens
Specimen
Objective lens
Projection lens
Image plane
Fluorescent screen
Transmission EM

- Sample is fixed to prevent protein movement
 - Aldehydes to fix proteins
 - Flash-freezing
 - High-intensity microwaves
- Fixed sample is sliced very thin
 - Microtome
- Sample is stained with metal
 - Uranium
 - Osmium
Transmission EM

- High resolution
 - Can detect molecular complexes
 - Ribosomes
 - Flagellar base
 - Strands of DNA
 - Need many slices to determine 3D structure
Figure 01: Metal shadowing.

Figure 03: Negative contrast method of visualizing particles by electron microscopy.
Figure 04A: Image of negatively stained bacteriophage T7 helicase/primase in the presence of dTDP.

Figure 04B: Tomato bushy stunt virus particles

Part B courtesy of Robert G. Milne, Plant Virus Institute, National Research Council, Turin, Italy.
Scanning EM

- Sample is coated with heavy metal
 - Not sliced
 - Retains 3D structure
 - Gives 3D image
- Only examines surface of sample
Visualizing Molecules

- **X-ray crystallography**
 - Locates all atoms in a large molecular complex
 - Sample must be crystallized

- **Nuclear magnetic resonance (NMR)**
 - Measures resonance between chemical bonds
 - Can locate all atoms in a small protein
 - Shows atomic movement of proteins in solution
 - Proteins embedded in membranes
X-Ray Crystallography

- X-rays have tiny wavelength
 - Resolution less than 1 Angstrom
 - 0.1 nm = width of a hydrogen ion
- No lenses to focus X-rays
 - Shoot X-rays at crystallized sample
 - Many molecules in identical conformation
 - X-rays diffract according to position of atoms
 - Compute position of atoms from pattern of scattered X-rays
X-Ray Crystallography

- Can detect position of thousands of atoms in a complex of proteins

“Ribbon” shows position of “backbone” of amino acids in proteins