Energetics and Catabolism
Building the Environment

- Sun is ultimate energy source
- Photosynthesis
 - Captures light, stores as chemical energy
- Heterotrophy
 - Uses captured chemical energy
 - Builds other chemicals
- Waste
 - Each step gives off heat energy
Building the Cell

- **Catabolism**
 - Breaking down molecules for energy

- **Anabolism**
 - Using energy to build cell components
 - Reducing entropy, creating order

- **Metabolism**
 - Balance between catabolism and anabolism
 - Central biochemical pathways used for both
 - TCA cycle, glycolysis, pentose phosphate shunt
Building the Cell

- Predominant energy source is electricity
 - Electrons passed from A to B
 - A is oxidized, B is reduced
 - Energy of electron flow powers the cell

- Photosynthesis
 - Light reduces electron donors

- Heterotrophy
 - Reduced compounds used for energy

- Energy used to build cell components
Electron Transfer

- Major source of cell energy
 - Passage of electrons releases energy
 - Requires electron donor, electron acceptor

- Electron transport found in all cells
 - Different donors, acceptors

- Electron energy can be stored
 - Reduced chemicals
 - Concentration gradient
 - Phosphorylation of chemicals
Phosphorylation Energy

- Less energy than oxido-reduction
 - Useful energy level for most cell reactions
- No electron donor or acceptor needed
- Phosphate added via dehydration
 - Released via hydrolysis
 - Water is plentiful
- ATP most common
 - GTP sometimes is present

\[
\text{ADP} + \text{HOPO}_3^- + \text{H}^+ \rightarrow \text{ATP} + \text{H}_2\text{O} \quad \Delta G^\circ = 31 \text{ kJ/mol}
\]
Metabolism

Sunlight
(Major energy source today)

Phototrophy

Reduced geological compounds (rocks, inorganic compounds)
(First energy source)

Lithotrophy

(Reduced) biological macromolecules (starch, fats)
(Energy source for animals)

Organotrophy

Energy

CATABOLISM

Short-term energy storage

ATP

Long-term energy storage

Biosynthesis

ANABOLISM

Carbon, nitrogen, water

Microbiology: An Evolving Science
© 2009 W. W. Norton & Company, Inc.
Enzymes Catalyze Reactions

- Reactions don’t always occur
 - Even if $\Delta G < 0$
 - Kinetic barrier
 - Activation energy
- Enzymes = catalysts
 - Lower activation energy
 - Remove kinetic barrier
 - Allow reaction to occur rapidly
Catabolism: The Microbial Buffet

Microbes have great catabolic diversity

- **Electron donors**
 - Lithotrophy: inorganic molecules
 - Organotrophy: organic molecules
 - Phototrophy: use light energy to reduce compounds, then use these as electron donor

- **Electron acceptors**
 - Respiration: inorganic molecules
 - Fermentation: organic molecules
Organotrophy

- Wide range of organic compounds digested
 - Polysaccharides
 - Converted to glucose
 - Lipids
 - Converted to acetyl-CoA
 - And glycerol
 - Amino acids
 - Aromatic compounds
 - Converted to acetyl-CoA
Glucose Breakdown

- ** Glycolysis
 - Embden-Meyerhof-Parnas pathway
 - Glucose is activated
 - Phosphorylated twice by ATP
 - Activated phospho-sugar is split
 - Converted to glyceraldehyde 3-phosphate
 - Glyceraldehyde-3-P is oxidized
 - Energy stored as ATP
 - End product is 2 pyruvates
 - Requires 2 ATP, yields 4 ATP
 - + 2 NADH
Glucose Breakdown

- **Entner-Doudoroff Pathway**
 - Used by *E. coli*
 - Glucose or sugar acid is activated
 - Phosphorylated once by ATP
 - Glucose-6-P is oxidized, then split
 - Converted to 6-P-gluconolactone
 - Then to pyruvate and glyceraldehyde-3-P
 - Glyceraldehyde-3-P is oxidized
 - as in EMP pathway
 - Requires 1 ATP, yields 2 ATP
 - + 1 NADH, 1 NADPH
Glucose Breakdown

- Pentose phosphate shunt
 - Glucose is activated
 - Phosphorylated once by ATP
 - Glucose-6-P is oxidized twice
 - Converted to 6-P-gluconolactone
 - Oxidized to ribulose-5-P
 - Ribulose-5-P is used for biosynthesis
 - Produces ribose for nucleic acids
 - Requires 1 ATP, yields 2 ATP
 - + 2 NADPH
The Tricarboxylic Acid Cycle

- **Respiration**
 - Need to eliminate pyruvate
 - Oxidize completely to CO$_2$
 - Only possible with inorganic electron acceptor
 - Respiration produces more energy than fermentation
 - Fermentation only when no inorganic acceptor present

- **Pyruvate dehydrogenase complex**
 - Converts pyruvate to acetyl-CoA
 - CO$_2$ diffuses easily out of cell
 - Electrons passed to NADH
The TCA Cycle

- Eliminates Pyruvate/AcetylCoA
 - Oxidize completely to CO$_2$
 - Pyruvate = glycolysis product
 - AcCoA = lipid oxidation product
 - Make ATP
- Need oxaloacetate
 - Add 2C to 4C → 6C
 - Oxidize twice
 - Eliminate 2C, make ATP
 - Produce 4C compound
 - Succinate
Advantage of Cycles

- Pathway requires source
 - Oxaloacetate must be supplied
- Pathway builds up products
 - Succinate is produced
- Convert product to source
 - Solves both problems
 - Always have source reagent
 - Never build up product excess
- Many cycles in biology
The TCA Cycle

- Coenzyme A carries away CO_2
 - While oxidizing the molecule
 - Used 3 times for oxidation of pyruvate
- TCA intermediates used throughout cell
 - Form amino acids
 - Oxaloacetate, α-ketoglutarate
 - TCA used for catabolism and anabolism
- Variant cycles used in some microbes
 - Glyoxylate cycle
Fermentation

- Glucose is oxidized
 - NADH is reduced
 - Must be reoxidized to NAD$^+$ + H$^+$
 - Pyruvate product builds up
 - Must be eliminated

- Fermentation
 - Pass electrons back to pyruvate
 - Or to Acetyl-CoA produced from pyruvate
 - Convert pyruvate into other products
 - Useful for cell, or easy to eliminate
Fermentation

- **S. cerevisiae** (baker’s yeast)
 - Decarboxylate pyruvate
 - \(\text{CO}_2 \) produced causes bread to rise
 - Reduce acetaldehyde to ethanol
- Vertebrate muscles
 - Lactate buildup, reoxidized when \(\text{O}_2 \) present
- **E. coli**
 - Mixed fermentation produces formate, acetate
- **Propionibacterium**
 - \(\text{CO}_2 \) produced makes holes in cheese
Aromatic Catabolism

- Bacteria can degrade many compounds
 - *Pseudomonas, Rhodococcus*
- Aromatic compounds converted to pyruvate
 - Allows growth in wide range of environments
 - Used for bioremediation
 - Cleaning up oil spills
 - Cleaning industrial sites
 - Degrading toxic compounds
Gibbs Free Energy

- \(\Delta G = \Delta H - T \Delta S \)
 - \(\Delta H \) = change in enthalpy
 - Release of heat
 - \(\Delta S \) = change of entropy

- \(\Delta G \) must be negative for reaction to occur
 - Reaction can be blocked even if \(\Delta G < 0 \)

- \(\Delta G \) depends on reactant concentration
 - \(\Delta G = \Delta G^\circ + RT \ln \frac{[C][D]}{[A][B]} \)
 - Low product concentration can drive reaction
Biochemical Reaction Energy

- $\Delta G = \Delta H - T\Delta S$
- Entropy stronger at higher temperatures
 - Breakdown of a large molecule into small ones
 - Release of gas
- Diffusion spreads molecules out
 - Requires energy to contain them
- Gradient = stored energy