Environmental Limits on Microbial Growth

- Temperature
- pH
- Osmolarity
- Oxygen
- Pressure
Changes in Temperature

- Growth rate increases with temperature
- Proteins denature if temperature too high

 - Microbial proteins adapted to temperature range:
 - Psychrophiles
 - Cold: 0°C–20°C
 - Mesophiles
 - 12°C–45°C
 - Thermophiles
 - 40°C–80°C
 - Extreme thermophiles
 - 65°C–113°C
Response to Temperature

- Heat shock response
 - Occurs at high end of temperature range
 - “Emergency” proteins produced
 - Help keep proteins from denaturing
 - Induced by many stressful conditions
 - Heat
 - High salt concentrations
 - Arid conditions
Variations in Pressure

- **Barophiles**
 - Adapted to high pressures
 - Up to 1,000 atm

- **Barotolerant organisms**
 - Grow at high, but not very high pressure

- **Barosensitive organisms**
 - Die at high pressure
 - Most “typical” bacteria, all mammals
Changes in Water Activity

- Solute changes raise osmolarity
- High osmolarity reduces available water
- Osmotic pressure can burst membranes
 - Low osmotic pressure outside cell
 - Mechanosensitive channels relieve stress
 - Release cell contents
 - High osmotic pressure outside cell
 - Cells synthesize osmolytes
 - Increase internal osmolarity
Changes in Water Activity

- Halophiles
- Require high concentration of NaCl
 - 2–4 M (10x seawater)
 - Live in salt seas
Changes in pH

- Enzymes only work in narrow pH range
 - Amino acids must have correct charges
 - pH levels alter concentration of H^+
- Bacteria regulate internal pH
 - When environment is in similar pH range
- Weak acids can pass through membranes
 - Disrupt cell pH homeostasis, kills cells
 - Good food preservatives
Changes in pH

- Neutralophiles
 - Grow at pH 5–8
 - Include bacteria in gut

- Acidophiles
 - Grow at pH 0–5
 - Some grow in stomach acid
 - Some in sulfuric acid springs

- Alkalophiles
 - Grow at pH 9–11
 - Found in soda lakes
Oxygen as Electron Acceptor

- **Aerobes**—O$_2$ is ultimate electron acceptor
 - Very strong electron acceptor
 - Can oxidize, damage proteins

- **Anaerobes**
 - Reactive oxygen species (ROS) produced
 - Oxidize, damage proteins

- **Microaerophiles**
 - Can tolerate low levels of O$_2$
 - Catalase inactivates ROS
Other Electron Acceptors

- Anaerobes pass electrons to different ultimate electron acceptors
 - Anaerobic respiration
 - Inorganic electron acceptors
 - Nitrate nitrite, thiosulfate
 - Fermentation
 - Organic electron acceptors
- Thrive in anaerobic environments
 - Early Earth, deep water, lower gut
Nutrient Deprivation, Starvation

- Lack of nutrients slows cell metabolism
 - Stimulates stress responses
 - Cells spread farther
 - Sporulation

- Oligotrophs
 - Most microbes
 - Efficiently absorb N$_2$, PO$_4$ from nutrient-poor environments
 - Many nutrients at low environmental levels
Controlling Microbial Growth

- Microbes die at logarithmic rate
- **D-value** = time to kill 90% of cells
 - 2 D-values = time to kill 99% of cells
- Antimicrobial agents decrease D-value
 - Kills cells faster
Physical Agents—Temperature

- Pasteurization
 - 63°C for 30 minutes

- Flash pasteurization
 - 72°C for 15 seconds
 - Pasteurization treatments do NOT kill all cells
 - Pasteurized food spoils eventually
 - Leaves food tasting normal

- UHT—Ultra-high temperature
 - 150°C for 3 seconds
 - Sterilizes—all bacteria killed
 - Used for creamers
Physical Agents
—Temperature + Pressure

- Autoclave = steam cooker
 - 121°C, 15 psi (2 atm) for 20 minutes
 - Kills all bacteria
 - Kills endospores
 - *Clostridium botulinum*
 - Botulism
 - *Bacillus anthracis*
 - Anthrax
Physical Agents—Other Methods

- Cold temperature—refrigeration
 - Slows growth, does not kill all bacteria

- Freezing

- Irradiation
 - UV, X-rays, γ-rays

- Filtration
Chemical Agents

- Disinfectants
 - Kill all microbes
 - Destroys eukaryotic cells as well
 - Cannot be used inside patients
 - Bleach (chlorine), Betadyne (iodine)
 - Soap
 - Detergents
Chemical Agents

- Antibiotics
 - Selectively kills microbes
 - May not work on all species
 - Has minimal effect on eukaryotic cells
 - Can be used inside patients
 - Interferes with bacterial-specific enzymes
 - Cell wall synthesis
 - Bacterial ribosome
Penicillin

- Many derivatives
- Blocks cell wall synthesis
- Growing bacteria lyse
 - Slow-growing bacteria take longer to die

Weakening cell wall
Biological Agents

- Probiotics
 - “Good” bacteria
 - Displace disease organisms from tissues

- Bacteriophages
 - “Phages”
 - Viruses that attack bacteria
 - Do not harm eukaryotes