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1

The intriguing natural numbers

`The time has come,' the Walrus said, `To talk of many things.'

Lewis Carroll

1.1 Polygonal numbers

We begin the study of elementary number theory by considering a few

basic properties of the set of natural or counting numbers, f1, 2, 3, . . .g.
The natural numbers are closed under the binary operations of addition and

multiplication. That is, the sum and product of two natural numbers are

also natural numbers. In addition, the natural numbers are commutative,

associative, and distributive under addition and multiplication. That is, for

any natural numbers, a, b, c:

a� (b� c) � (a� b)� c, a(bc) � (ab)c (associativity);

a� b � b� a, ab � ba (commutativity);

a(b� c) � ab� ac, (a� b)c � ac� bc (distributivity):

We use juxtaposition, xy, a convention introduced by the English mathema-

tician Thomas Harriot in the early seventeenth century, to denote the

product of the two numbers x and y. Harriot was also the ®rst to employ

the symbols `.' and `,' to represent, respectively, `is greater than' and `is

less than'. He is one of the more interesting characters in the history of

mathematics. Harriot traveled with Sir Walter Raleigh to North Carolina in

1585 and was imprisoned in 1605 with Raleigh in the Tower of London

after the Gunpowder Plot. In 1609, he made telescopic observations and

drawings of the Moon a month before Galileo sketched the lunar image in

its various phases.

One of the earliest subsets of natural numbers recognized by ancient

mathematicians was the set of polygonal numbers. Such numbers represent

an ancient link between geometry and number theory. Their origin can be

traced back to the Greeks, where properties of oblong, triangular, and

square numbers were investigated and discussed by the sixth century BC,

pre-Socratic philosopher Pythagoras of Samos and his followers. The
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Greeks established the deductive method of reasoning whereby conclusions

are derived using previously established results.

At age 18, Pythagoras won a prize for wrestling at the Olympic games.

He studied with Thales, father of Greek mathematics, traveled extensively

in Egypt and was well acquainted with Babylonian mathematics. At age

40, after teaching in Elis and Sparta, he migrated to Magna Graecia, where

the Pythagorean School ¯ourished at Croton in what is now Southern Italy.

The Pythagoreans are best known for their theory of the transmigration of

souls and their belief that numbers constitute the nature of all things. The

Pythagoreans occupied much of their time with mysticism and numerology

and were among the ®rst to depict polygonal numbers as arrangements of

points in regular geometric patterns. In practice, they probably used

pebbles to illustrate the patterns and in doing so derived several funda-

mental properties of polygonal numbers. Unfortunately, it was their obses-

sion with the dei®cation of numbers and collusion with astrologers that

later prompted Saint Augustine to equate mathematicans with those full of

empty prophecies who would willfully sell their souls to the Devil to gain

the advantage.

The most elementary class of polygonal numbers described by the early

Pythagoreans was that of the oblong numbers. The nth oblong number,

denoted by on, is given by n(n� 1) and represents the number of points in

a rectangular array having n columns and n� 1 rows. Since 2� 4 � � � �
� 2n � 2(1� 2 � � � � �n) � 2 . n(n� 1)=2 � n(n� 1) � on, the sum of

the ®rst n even numbers equals the nth oblong number. Diagrams for the

®rst four oblong numbers, 2, 6, 12, and 20, are illustrated in Figure 1.1.

The triangular numbers, 1, 3, 6, 10, 15, . . . , tn, . . . , where tn denotes

the nth triangular number, represent the numbers of points used to portray

equilateral triangular patterns as shown in Figure 1.2. In general, from the

sequence of dots in the rows of the triangles in Figure 1.2, it follows that

tn, for n > 1, represents successive partial sums of the ®rst n natural

numbers. For example, t4 � 1� 2� 3� 4 � 10. Since the natural num-

bers are commutative and associative,

tn � 1� 2 � � � � � (nÿ 1)� n

…

Figure 1.1
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and

tn � n� (nÿ 1) � � � � � 2� 1;

adding columnwise, it follows that 2tn � (n� 1)� (n� 1) � � � �
(n� 1) � n(n� 1). Hence, tn � n(n� 1)=2. Multiplying both sides of the

latter equation by 2, we ®nd that twice a triangular number is an oblong

number. That is, 2tn � on, for any positive integer n. This result is

illustrated in Figure 1.3 for the case when n � 6.

The square numbers, 1, 4, 9, 16, . . . , were represented geometrically by

the Pythagoreans as square arrays of points, as shown in Figure 1.4. In

1225, Leonardo of Pisa, more commonly known as Fibonacci, remarked,

in Liber quadratorum (The Book of Squares) that the nth square number,

denoted by sn, exceeded its predecessor, snÿ1, by the sum of the two roots.

That is sn � snÿ1 � ����
sn
p � ���������

snÿ1
p

or, equivalently, n2 � (nÿ 1)2 � n �
(nÿ 1). Fibonacci, later associated with the court of Frederick II, Emperor

of the Holy Roman Empire, learned to calculate with Hindu±Arabic

numerals while in Bougie, Algeria, where his father was a customs of®cer.

…

Figure 1.2

Figure 1.3

…

Figure 1.4
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He was a direct successor to the Arabic mathematical school and his work

helped popularize the Hindu±Arabic numeral system in Europe. The origin

of Leonardo of Pisa's sobriquet is a mystery, but according to some

sources, Leonardo was ®glio de (son of) Bonacci and thus known to us

patronymically as Fibonacci.

The Pythagoreans realized that the nth square number is the sum of the

®rst n odd numbers. That is, n2 � 1� 3� 5 � � � � � (2nÿ 1), for any

positive integer n. This property of the natural numbers ®rst appears in

Europe in Fibonacci's Liber quadratorum and is illustrated in Figure 1.5,

for the case when n � 6.

Another interesting property, known to the early Pythagoreans, appears

in Plutarch's Platonic Questions. Plutarch, a second century Greek biogra-

pher of noble Greeks and Romans, states that eight times any triangular

number plus one is square. Using modern notation, we have 8tn � 1 �
8[n(n� 1)=2]� 1 � (2n� 1)2 � s2n�1. In Figure 1.6, the result is illu-

strated for the case n � 3. It is in Plutarch's biography of Marcellus that we

®nd one of the few accounts of the death of Archimedes during the siege of

Syracuse, in 212 BC.

Around the second century BC, Hypsicles [HIP sih cleez], author of

Book XIV, a supplement to Book XIII of Euclid's Elements on regular

Figure 1.5

Figure 1.6
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polyhedra, introduced the term polygonal number to denote those natural

numbers that were oblong, triangular, square, and so forth. Earlier, the

fourth century BC philosopher Plato, continuing the Pythagorean tradition,

founded a school of philosophy near Athens in an area that had been

dedicated to the mythical hero Academus. Plato's Academy was not

primarily a place for instruction or research, but a center for inquiry,

dialogue, and the pursuit of intellectual pleasure. Plato's writings contain

numerous mathematical references and classi®cation schemes for numbers.

He ®rmly believed that a country's leaders should be well-grounded in

Greek arithmetic, that is, in the abstract properties of numbers rather than

in numerical calculations. Prominently displayed at the Academy was a

maxim to the effect that none should enter (and presumably leave) the

school ignorant of mathematics. The epigram appears on the logo of the

American Mathematical Society. Plato's Academy lasted for nine centuries

until, along with other pagan schools, it was closed by the Byzantine

Emperor Justinian in 529.

Two signi®cant number theoretic works survive from the early second

century, On Mathematical Matters Useful for Reading Plato by Theon of

Smyrna and Introduction to Arithmetic by Nicomachus [nih COM uh kus]

of Gerasa. Smyrna in Asia Minor, now Izmir in Turkey, is located about 75

kilometers northeast of Samos. Gerasa, now Jerash in Jordan, is situated

about 25 kilometers north of Amman. Both works are philosophical in

nature and were written chie¯y to clarify the mathematical principles found

in Plato's works. In the process, both authors attempt to summarize the

accumulated knowledge of Greek arithmetic and, as a consequence, neither

work is very original. Both treatises contain numerous observations

concerning polygonal numbers; however, each is devoid of any form of

rigorous proofs as found in Euclid. Theon's goal was to describe the beauty

of the interrelationships between mathematics, music, and astronomy.

Theon's work contains more topics and was a far superior work mathema-

tically than the Introduction, but it was not as popular. Both authors note

that any square number is the sum of two consecutive triangular numbers,

that is, in modern notation, sn � tn � t nÿ1, for any natural number n . 1.

Theon demonstrates the result geometrically by drawing a line just above

and parallel to the main diagonal of a square array. For example, the case

where n � 5 is illustrated in Figure 1.7. Nicomachus notes that if the

square and oblong numbers are written alternately, as shown in Figure 1.8,

and combined in pairs, the triangular numbers are produced. That is, using

modern notation, t2n � sn � on and t2n�1 � sn�1 � on, for any natural

number n. From a standard multiplication table of the ®rst ten natural

1.1 Polygonal numbers 5



numbers, shown in Table 1.1, Nicomachus notices that the major diagonal

is composed of the square numbers and the successive squares sn and sn�1

are ¯anked by the oblong numbers on. From this, he deduces two properties

that we express in modern notation as sn � sn�1 � 2on � s2n�1 and

onÿ1 � on � 2sn � s2n.

Nicomachus extends his discussion of square numbers to the higher

dimensional cubic numbers, 1, 8, 27, 64, . . . , and notes, but does not

establish, a remarkable property of the odd natural numbers and the cubic

numbers illustrated in the triangular array shown in Figure 1.9, namely, that

the sum of the nth row of the array is n3. It may well have been

Nicomachus's only original contribution to mathematics.

Figure 1.7

s1

1

o1

2

s2

4

o2

6

s3

9

o3

12

s4

16

o4

20

s5

25

o5

30

3

t2

6

t3

10

t4

15

t5

21

t6

28

t7

36

t8

45

t9

55

t10

Figure 1.8

Table 1.1.

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 12 14 16 18 20
3 3 6 9 12 15 18 21 24 27 30
4 4 8 12 16 20 24 28 32 36 40
5 5 10 15 20 25 30 35 40 45 50
6 6 12 18 24 30 36 42 48 54 60
7 7 14 21 28 35 42 49 56 63 70
8 8 16 24 32 40 48 56 64 72 80
9 9 18 27 36 45 54 63 72 81 90

10 10 20 30 40 50 60 70 80 90 100
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In the Introduction, Nicomachus discusses properties of arithmetic,

geometric, and harmonic progressions. With respect to the arithmetic

progression of three natural numbers, he observes that the product of the

extremes differs from the square of the mean by the square of the common

difference. According to this property, known as the Regula Nicomachi, if

the three terms in the progression are given by aÿ k, a, a� k, then

(aÿ k)(a� k)� k2 � a2. In the Middle Ages, rules for multiplying two

numbers were rather complex. The Rule of Nicomachus was useful in

squaring numbers. For example, applying the rule for the case when

a � 98, we obtain 982 � (98ÿ 2)(98� 2)� 22 � 96 . 100� 4 � 9604.

After listing several properties of oblong, triangular, and square num-

bers, Nicomachus and Theon discuss properties of pentagonal and hexago-

nal numbers. Pentagonal numbers, 1, 5, 12, 22, . . . , p5
n, . . . , where p5

n

denotes the nth pentagonal number, represent the number of points used to

construct the regular geometric patterns shown in Figure 1.10. Nicomachus

generalizes to heptagonal and octagonal numbers, and remarks on the

patterns that arise from taking differences of successive triangular, square,

pentagonal, heptagonal, and octagonal numbers. From this knowledge, a

general formula for polygonal numbers can be derived. A practical tech-

nique for accomplishing this involving successive differences appeared in

a late thirteenth century Chinese text Works and Days Calendar by Wang

Xun and Guo Shoujing. The method was mentioned in greater detail in

1302 in Precious Mirror of the Four Elements by Zhu Shijie, a wandering

1
3 5

7 9 11
13 15 17 19

21 23 25 27 29
.............................................

1
8
27
64
125

Figure 1.9

…

Figure 1.10
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scholar who earned his living teaching mathematics. The method of ®nite

differences was rediscovered independently in the seventeenth century by

the British mathematicians Thomas Harriot, James Gregory, and Isaac

Newton.

Given a sequence, ak , ak�1, ak�2, . . . , of natural numbers whose r th

differences are constant, the method yields a polynomial of degree r ÿ 1

representing the general term of the given sequence. Consider the binomial

coef®cients

(n
k) � n!

k!(nÿ k)!
, for 0 < k < n, (n

0 ) � 1, and otherwise (n
k) � 0,

where for any natural number n, n factorial, written n!, represents the

product n(nÿ 1)(nÿ 2) � � � 3 . 2 . 1 and, for consistency, 0! � 1. The ex-

clamation point used to represent factorials was introduced by Christian

Kramp in 1802. The numbers, (n
k), are called the binomial coef®cients

because of the role they play in the expansion of (a� b)n �Pn
k�0(n

k)anÿk bk . For example,

(a� b)3 � (3
0)a3b0 � (3

1)a2b1 � (3
2)a1b2 � (3

3)a0b3

� a3 � 3a2b� 3ab2 � b3:

Denote the ith differences, Äi, of the sequence ak , ak�1, ak�2, . . . by

di1, di2, di3, . . . , and generate the following ®nite difference array:

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

an ak ak�1 ak�2 ak�3 ak�4 ak�5 ak�6

Ä1 d11 d12 d13 d14 d15 d16

Ä2 d21 d22 d23 d24 d25

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Är d r1 d r2 d r3 d r4

If the r th differences d r1, d r2, d r3, . . . are equal, then working backwards

and using terms in the leading diagonal each term of the sequence ak ,

ak�1, ak�2, . . . can be determined. More precisely, the ®nite difference

array for the sequence bn � (nÿk
m ), for m � 0, 1, 2, 3, . . . , r,

n � k, k � 1, k � 2, . . . , and a ®xed value of k, has the property that the

mth differences, Äm, consist of all ones and, except for d m1 � 1 for

1 < m < r, the leading diagonal is all zeros. For example, if m � 0, the

®nite difference array for an � (nÿk
0 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 1 1 1 1 1 1 1

Ä1 0 0 0 0 0 0

8 The intriguing natural numbers



If m � 1, the ®nite difference array for an � (nÿk
1 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 0 1 2 3 4 5 6

Ä1 1 1 1 1 1 1

Ä2 0 0 0 0 0 0

If m � 2, the ®nite difference array for an � (nÿk
2 ) is given by

n k k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

bn 0 0 1 3 6 10 15

Ä1 0 1 2 3 4 5

Ä2 1 1 1 1 1 1

Ä3 0 0 0 0 0

The leading diagonals of the ®nite difference array for the sequence ak ,

ak�1, ak�2, . . . , and the array de®ned by

ak(nÿk
0 )� d11(nÿk

1 )� d21(nÿk
2 ) � � � � � d r1(nÿk

r )

are identical. Therefore,

an � ak(nÿk
0 )� d11(nÿk

1 )� d21(nÿk
2 ) � � � � � d r1(nÿk

r ),

for n � k, k � 1, k � 2, . . . :

Example 1.1 The ®nite difference array for the pentagonal numbers, 1, 5,

12, 22, 35, . . . , p5
n, . . . is given by

n 1 2 3 4 5 6 . . .

p5
n 1 5 12 22 35 51 . . .

Ä1 4 7 10 13 16 . . .

Ä2 3 3 3 3 . . .

Our indexing begins with k � 1. Therefore

p5
n � 1 . (nÿ1

0 )� 4 . (nÿ1
1 )� 3 . (nÿ1

2 ) � 1� 4(nÿ 1)� 3
(nÿ 1)(nÿ 2)

2

� 3n2 ÿ n

2
:

From Table 1.2, Nicomachus infers that the sum of the nth square and

the (nÿ 1)st triangular number equals the nth pentagonal number, that is,

for any positive integer n, p5
n � sn � t nÿ1. For example, if n � 6,

s6 � t5 � 36� 15 � 51 � p5
6. He also deduces from Table 1.2 that three

times the (nÿ 1)st triangular number plus n equals the nth pentagonal

number. For example, for n � 9, 3 . t8 � 9 � 3 . 36� 9 � 117 � p5
9.

In general, the m-gonal numbers, for m � 3, 4, 5, . . . , where m refers

to the number of sides or angles of the polygon in question, are given by

1.1 Polygonal numbers 9



the sequence of numbers whose ®rst two terms are 1 and m and whose

second common differences equal mÿ 2. Using the ®nite difference

method outlined previously we ®nd that pm
n � (mÿ 2)n2=2ÿ (m ÿ

4)n=2, where pm
n denotes the nth m-gonal number. Triangular numbers

correspond to 3-gonal numbers, squares to 4-gonal numbers, and so forth.

Using Table 1.2, Nicomachus generalizes one of his previous observations

and claims that pm
n � p3

nÿ1 � pm�1
n, where p3

n represents the nth

triangular number.

The ®rst translation of the Introduction into Latin was done by Apuleius

of Madaura shortly after Nicomachus's death, but it did not survive.

However, there were a number of commentaries written on the Introduc-

tion. The most in¯uential, On Nicomachus's Introduction to Arithmetic,

was written by the fourth century mystic philosopher Iamblichus of Chalcis

in Syria. The Islamic world learned of Nicomachus through Thabit ibn

Qurra's Extracts from the Two Books of Nicomachus. Thabit, a ninth

century mathematician, physician, and philosopher, worked at the House

of Wisdom in Baghdad and devised an ingenious method to ®nd amicable

numbers that we discuss in Chapter 4. A version of the Introduction was

written by Boethius [beau EE thee us], a Roman philosopher and statesman

who was imprisoned by Theodoric King of the Ostrogoths on a charge of

conspiracy and put to death in 524. It would be hard to overestimate the

in¯uence of Boethius on the cultured and scienti®c medieval mind. His De

institutione arithmetica libri duo was the chief source of elementary

mathematics taught in schools and universities for over a thousand years.

He coined the term quadrivium referring to the disciplines of arithmetic,

geometry, music, and astronomy. These subjects together with the trivium

of rhetoric, grammar, and logic formed the seven liberal arts popularized in

the ®fth century in Martianus Capella's book The Marriage of Mercury

Table 1.2.

n 1 2 3 4 5 6 7 8 9 10

Triangular 1 3 6 10 15 21 28 36 45 55
Square 1 4 9 16 25 36 49 64 81 100
Pentagonal 1 5 12 22 35 51 70 92 117 145
Hexagonal 1 6 15 28 45 66 91 120 153 190
Heptagonal 1 7 18 34 55 81 112 148 189 235
Octagonal 1 8 21 40 65 96 133 176 225 280
Enneagonal 1 9 24 46 75 111 154 204 261 325
Decagonal 1 10 27 52 85 126 175 232 297 370

10 The intriguing natural numbers



and Philology. Boethius's edition of Nicomachus's Introduction was the

main medium through which the Romans and people of the Middle Ages

learned of formal Greek arithmetic, as opposed to the computational

arithmetic popularized in the thirteenth and fourteenth centuries with the

introduction of Hindu±Arabic numerals. Boethius wrote The Consolation

of Philosophy while in prison where he re¯ected on the past and on his

outlook on life in general. The Consolation was translated from Latin into

Anglo-Saxon by Alfred the Great and into English by Chaucer and

Elizabeth I.

In the fourth century BC Philip of Opus and Speusippus wrote treatises

on polygonal numbers that did not survive. They were, however, among the

®rst to extend polygonal numbers to pyramidal numbers. Speusippus [spew

SIP us], a nephew of Plato, succeeded his uncle as head of the Academy.

Philip, a mathematician±astronomer, investigated the connection between

the rainbow and refraction. His native home Opus, the modern town of

Atalandi, on the Euboean Gulf, was a capital of one of the regions of

Locris in Ancient Greece.

Each class of pyramidal number is formed from successive partial sums

of a speci®c type of polygonal number. For example, the nth tetrahedral

number, P3
n, can be obtained from successive partial sums of triangular

numbers, that is, P3
n � p3

1 � p3
2 � � � � � p3

n. For example, P3
4 � 1 �

3� 6� 10 � 20. Accordingly, the ®rst four tetrahedral numbers are 1, 4,

10, and 20. An Egyptian papyrus written about 300 BC gives 1
2
(n2 � n) as

the sum of the ®rst n natural numbers and 1
3
(n� 2)1

2
(n2 � n) as the sum of

the ®rst n triangular numbers. That is, tn � p3
n � n(n� 1)=2 and

P3
n � n(n� 1)(n� 2)=6. The formula for P3

n was derived by the sixth

century Indian mathematician±astronomer Aryabhata who calculated one

of the earliest tables of trigonometric sines using 3.146 as an estimate for

ð.

Example 1.2 Each triangle on the left hand side of the equality in Figure

1.11 gives a different representation of the ®rst four triangular numbers, 1,

3 (1� 2), 6 (1� 2� 3), and 10 (1� 2� 3� 4). Hence, 3 . (1� 3 �
6� 10) � 1 . 6� 2 . 6� 3 . 6� 4 . 6 � (1� 2� 3� 4) . 6 � t4(4� 2). In

6
6 6

6 6 6
6 6 6 6

4
3 3

2 2 2
1 1 1 1

1
2 1

3 2 1
4 3 2 1

1
1 2

1 2 3
1 2 3 4

1 1 5

Figure 1.11
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general, 3(t1 � t2 � t3 � � � � � tn) � tn(n� 2) � n(n� 1)(n� 2)=2.

Therefore, P3
n � n(n� 1)(n� 2)=6.

In Figure 1.11, the sum of the numbers in the third triangle is the fourth

tetrahedral number. That is, 1 . 4� 2 . 3� 3 . 2� 4 . 1 � 20. Thus, in gen-

eral, 1 . n� 2 . (nÿ 1) � � � � � (nÿ 1) . 2� n . 1 � P3
n. Hence, we can

generate the tetrahedral numbers by summing the terms in the SW±NE

diagonals of a standard multiplication table as shown in Table 1.3. For

example, P3
6 � 6� 10� 12� 12� 10� 6 � 56.

Pyramidal numbers with a square base are generated by successive

partial sums of square numbers. Hence, the nth pyramidal number, denoted

by P4
n, is given by 12 � 22 � 32 � � � � � n2 � n(n� 1)(2n� 1)=6. For

example, P4
4 � 1� 4� 9� 16 � 30. The total number of cannonballs in

a natural stacking with a square base is a pyramidal number.

Slicing a pyramid through a vertex and the diagonal of the opposite base

results in two tetrahedrons. Hence, it should be no surprise to ®nd that the

sum of two consecutive tetrahedral numbers is a pyramidal number, that is,

P4
n � P3

nÿ1 � P3
n.

In the tenth century, Gerbert of Aurillac in Auvergne included a number

of identities concerning polygonal and pyramidal numbers in his corre-

spondence with his pupil Adalbold, Bishop of Utrecht. Much of Gerbert's

Geometry was gleaned from the work of Boethius. One of the more

dif®cult problems in the book asks the reader to ®nd the legs of a right

triangle given the length of its hypotenuse and its area. Gerbert was one of

the ®rst to teach the use of Hindu±Arabic numerals and promoted the

utilization of zero as a digit. He was elected Pope Sylvester II in 999, but

his reign was short.

Table 1.3.

p3
9

165
p3

8
120

p3
7

84
p3

6
56

p3
5

35
p3

4
20

p3
3

10
p3

2
4

p3
1

1

1
2
3
4
5
6
7
8
9

2
4
6
8

10
12
14
16

3
6
9

12
15
18
21

4
8

12
16
20
24

5
10
15
20
25

6
12
18
24

7
14
21

8
16

9
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Triangular and tetrahedral numbers form a subclass of the ®gurate

numbers. In the 1544 edition of Arithmetica Integra, Michael Stifel de®ned

the nth mth-order ®gurate number, denoted by f m
n, as follows:

f m
n � f m

nÿ1 � f mÿ1
n, f m

1 � f 0
n � f 0

1 � 1, for n � 2, 3, . . . , and

m � 1, 2, 3, . . . : An array of ®gurate numbers is illustrated in Table 1.4,

where the nth triangular number corresponds to f 2
n and the nth tetrahe-

dral number to f 3
n. In 1656, John Wallis, the English mathematician who

served as a cryptanalyst for several Kings and Queens of England, and

introduced the symbol 1 to represent in®nity, showed that, for positive

integers n and r, f r
n�1 � f 0

n � f 1
n � f 2

n � � � � � f r
n.

Stifel was the ®rst to realize a connection existed between ®gurate

numbers and binomial coef®cients, namely that f m
n � (n�mÿ1

m ). In particu-

lar, f 2
n � tn � (n�1

2 ) and f 3
n � P3

n � (n�2
3 ). Stifel earned a Master's

degree at Wittenberg University. He was an avid follower of Martin Luther,

an ardent biblical scholar, and a millenarian. Stifel must have thought he

was standing in the foothills of immortality when, through his reading, he

inferred that the world was going to end at 8 o'clock on the morning of

October 18, 1533. He led a band of followers to the top of a nearby hill to

witness the event, a nonoccurrence that did little to enhance his credibility.

Nicomachus's Introduction to Arithmetic was one of the most signi®cant

ancient works on number theory. However, besides Books VII±IX of

Euclid's Elements, whose contents we will discuss in the next chapter, the

most in¯uential number theoretic work of ancient times was the Arith-

metica of Diophantus, one of the oldest algebra treatises in existence.

Diophantus, a mathematician who made good use of Babylonian and Greek

sources, discussed properties of polygonal numbers and included a rule to

determine the nth m-gonal number which he attributed to Hypsicles.

Unfortunately, a complete copy of the Arithmetica was lost when the

Library of Alexandria was vandalized in 391 by Christians acting under the

Table 1.4.

n 1 2 3 4 5 6 7 8 9 10

f 0
n 1 1 1 1 1 1 1 1 1 1

f 1
n 1 2 3 4 5 6 7 8 9 10

f 2
n 1 3 6 10 15 21 28 36 45 55

f 3
n 1 4 10 20 35 56 84 120 165 220

f 4
n 1 5 15 35 70 126 210 330 495 715

f 5
n 1 6 21 56 126 252 462 792 1287 2002

f 6
n 1 7 28 84 210 462 924 1716 3003 5005
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aegis of Theophilus, Bishop of Alexandria, and a decree by Emperor

Theodosius concerning pagan monuments. Portions of the treatise were

rediscovered in the ®fteenth century. As a consequence, the Arithmetica

was one of the last Greek mathematical works to be translated into Latin.

There were a number of women who were Pythagoreans, but Hypatia,

the daughter of the mathematician Theon of Alexandria, was the only

notable female scholar in the ancient scienti®c world. She was one of the

last representatives of the Neo-platonic School at Alexandria, where she

taught science, art, philosophy, and mathematics in the early ®fth century.

She wrote a commentary, now lost, on the ®rst six books of the Arithmetica

and may very well have been responsible for editing the version of

Ptolemy's Almagest that has survived. Some knowledge of her can be

gleaned from the correspondence between her and her student Synesius,

Bishop of Cyrene. As a result of her friendship with Alexandria's pagan

Prefect, Orestes, she incurred the wrath of Cyril, Theophilus's nephew who

succeeded him in 412 as Bishop of Alexandria. In 415, Hypatia was

murdered by a mob of Cyril's followers. During the millennium following

her death no woman distinguished herself in science or mathematics.

In the introduction to the Arithmetica, Diophantus refers to his work as

consisting of thirteen books, where a book consisted of a single scroll

representing material covered in approximately twenty to ®fty pages of

ordinary type. The ®rst six books of the Arithmetica survived in Greek and

four books, which may have a Hypatian rather than a Diophantine origin,

survived in Arabic. In addition, a fragment on polygonal numbers by

Diophantus survives in Greek. The Arithmetica was not a textbook, but an

innovative handbook involving computations necessary to solve practical

problems. The Arithmetica was the ®rst book to introduce consistent

algebraic notation and systematically use algebraic procedures to solve

equations. Diophantus employed symbols for squares and cubes but limited

himself to expressing each unknown quantity in terms of a single variable.

Diophantus is one the most intriguing and least known characters in the

history of mathematics.

Much of the Arithmetica consists of cleverly constructed positive

rational solutions to more than 185 problems in indeterminate analysis.

Negative solutions were not acceptable in Diophantus's time or for the next

1500 years. By a rational solution, we mean a number of the form p=q,

where p and q are integers and q 6� 0. In one example, Diophantus

constructed three rational numbers with the property that the product of

any two of the numbers added to their sum or added to the remaining

number is square. That is, in modern notation, he determined numbers x, y,
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z such that xy� x� y, xz� x� z, yz� y� z, xy� z, xz� y, and yz� x

are all square. In another problem, Diophantus found right triangles with

sides of rational length such that the length of the hypotenuse minus the

length of either side is a cube. In the eleventh century, in Baghdad, the

Islamic mathematician al-Karaji and his followers expanded on the meth-

ods of Diophantus and in doing so undertook a systematic study of the

algebra of exponents.

Problems similar to those found in the Arithmetica ®rst appear in Europe

in 1202 in Fibonacci's Liber abaci (Book of Calculations). The book

introduced Hindu±Arabic numerals to European readers. It was revised by

the author in 1228 and ®rst printed in 1857. However, the ®rst reference to

Diophantus's works in Europe is found in a work by Johannes MuÈller who,

in his day, was called Joannes de Regio monte (John of KoÈnigsberg).

However, MuÈller is perhaps best known today by his Latinized name

Regiomontanus, which was popularized long after his death. Regiomonta-

nus, the ®rst publisher of mathematical and astronomical literature, studied

under the astronomer Georges Peurbach at the University of Vienna. He

wrote a book on triangles and ®nished Peurbach's translation of Ptolemy's

Almagest. Both Christopher Columbus and Amerigo Vespucci used his

Ephemerides on their voyages. Columbus, facing starvation in Jamaica,

used a total eclipse of the Moon on February 29, 1504, predicted in the

Ephemerides, to encourage the natives to supply him and his men with

food. A similar idea, albeit using a total solar eclipse, was incorporated by

Samuel Clemens (Mark Twain) in A Connecticut Yankee in King Arthur's

Court. Regiomontanus built a mechanical ¯y and a `¯ying' eagle, regarded

as the marvel of the age, which could ¯ap its wings and saluted when

Emperor Maximilian I visited Nuremberg. Domenico Novarra, Coperni-

cus's teacher at Bologna, regarded himself as a pupil of Regiomontanus

who, for a short period, lectured at Padua.

Regiomontanus wrote to the Italian mathematician Giovanni Bianchini

in February 1464 that while in Venice he had discovered Greek manu-

scripts containing the ®rst six books of Arithmetica. In 1471, Regiomonta-

nus was summoned to Rome by Pope Sixtus IV to reform the ecclesiastical

calendar. However, in 1476, before he could complete his mission, he died

either a victim of the plague or poisoned for his harsh criticism of a

mediocre translation of the Almagest.

In 1572, an Italian engineer and architect, Rafael Bombelli, published

Algebra, a book containing the ®rst description and use of complex

numbers. The book included 271 problems in indeterminate analysis, 147

of which were borrowed from the ®rst four books of Diophantus's
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Arithmetica. Gottfried Leibniz used Bombelli's text as a guide in his study

of cubic equations. In 1573, based on manuscripts found in the Vatican

Library, Wilhelm Holtzman, who wrote under the name Xylander, pub-

lished the ®rst complete Latin translation of the ®rst six books of the

Arithmetica. The Dutch mathematician, Simon Stevin, who introduced a

decimal notation to European readers, published a French translation of the

®rst four books of the Arithmetica, based on Xylander's work.

In 1593, FrancËois VieÁte, a lawyer and cryptanalyst at the Court of Henry

IV, published Introduction to the Analytic Art, one of the ®rst texts to

champion the use of Latin letters to represent numbers to solve problems

algebraically. In an effort to show the power of algebra, VieÁte included

algebraic solutions to a number of interesting problems that were men-

tioned but not solved by Diophantus in the Arithmetica.

A ®rst-rate translation, Diophanti Alexandrini arithmeticorum libri sex,

by Claude-Gaspard Bachet de MeÂziriac, appeared in 1621. Bachet, a

French mathematician, theologian, and mythologist of independent means,

included a detailed commentary with his work. Among the number

theoretic results Bachet established were

(a) pm
n�r � pm

n � pm
r � nr(mÿ 2),

(b) pm
n � p3

n � (mÿ 3) p3
nÿ1, and

(c) 13 � 23 � 33 � � � � � n3 � ( p3
n)2,

where pm
n denotes the nth m-gonal number. The third result is usually

expressed as 13 � 23 � 33 � � � � � n3 � (1� 2� 3 � � � � � n)2 and re-

ferred to as Lagrange's identity.

In the fourth book of the Arithmetica Diophantus found three rational

numbers, 153
81

, 6400
81

, and 8
81

, which if multiplied in turn by their sum yield a

triangular number, a square number, and a cube, respectively. Bachet

extended the problem to one of ®nding ®ve numbers which if multiplied in

turn by their sum yield a triangular number, a square, a cube, a pentagonal

number, and a fourth power, respectively.

Bachet was an early contributor to the ®eld of recreational mathematics.

His ProbleÁmes plaisants et deÂlectables qui se font par les nombres, ®rst

published in 1612, is replete with intriguing problems including a precursor

to the cannibals and missionaries problem, the Christians and Turks

problem, and a discussion on how to create magic squares. At age 40,

Bachet married, retired to his country estate, sired seven children, and gave

up his mathematical activity forever. Except for recurring bouts with gout

and rheumatism, he lived happily ever after.

The rediscovery of Diophantus's work, in particular through Bachet's
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edition which relied heavily on Bombelli's and Xylander's work, greatly

aided the renaissance of mathematics in Western Europe. One of the

greatest contributors to that renaissance was Pierre de Fermat [fair MAH],

a lawyer by profession who served as a royal councillor at the Chamber of

Petitions at the Parlement of Toulouse. Fermat was an outstanding amateur

mathematician. He had a ®rst-class mathematical mind and, before Newton

was born, discovered a method for ®nding maxima and minima and general

power rules for integration and differentiation of polynomial functions of

one variable. He rarely, however, published any of his results. In 1636, he

wrote, in a burst of enthusiasm, that he had just discovered the very

beautiful theorem that every positive integer is the sum of at most three

triangular numbers, every positive integer is the sum of at most four

squares, every positive integer is the sum of at most ®ve pentagonal

numbers, and so on ad in®nitum, but added, however, that he could not give

the proof, since it depended on `numerous and abstruse mysteries of

numbers'. Fermat planned to devote an entire book to these mysteries and

to `effect in this part of arithmetic astonishing advances over the previously

known limits'. Unfortunately, he never published such a book.

In 1798, in TheÂorie des nombres, the Italian mathematician and astron-

omer, Joseph-Louis Lagrange, used an identity discovered by the Swiss

mathematician Leonhard Euler to prove Fermat's claim for the case of

square numbers. Karl Friedrich Gauss proved the result for triangular

numbers when he was nineteen and wrote in his mathematical diary for 10

July 1796: `åõrçká! num � m�m�m:' Two years later, Gauss's result

was proved independently by the French mathematician, Adrien Marie

Legendre. In the introduction to Disquisitiones arithmeticae (Arithmetical

Investigations) Gauss explains his indebtedness to Diophantus's Arith-

metica. In Chapters 5, 6, and 8, we discuss the contents of Gauss's

Disquisitiones. In 1808, Legendre included a number of quite remarkable

number theoretic results in his TheÂorie des nombres; in particular, the

property that every odd number not of the form 8k � 7, where k is a

positive integer, can be expressed as the sum of three or fewer square

numbers. In 1815, Augustin-Louis Cauchy proved that every positive

integer is the sum of m m-gonal numbers of which all but four are equal to

0 or 1. Cauchy's Cours d'analyse, published in 1821, advocated a rigorous

approach to mathematical analysis, in particular to the calculus. Unfortu-

nately, Cauchy was very careless with his correspondence. Evariste Galois

and Niels Henrik Abel sent brilliant manuscripts to Cauchy for his

examination and evaluation, but they were lost.

One of the ®rst results Fermat established was that nine times any
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triangular number plus one always yielded another triangular number.

Fermat later showed that no triangular number greater than 1 could be a

cube or a fourth power. Fermat, always the avid number theorist, once

challenged Lord Brouncker, ®rst President of the Royal Society, and John

Wallis, the best mathematician in England at the time, to prove there is no

triangular number other than unity that is a cube or a fourth power. Neither

was able to answer his query.

Fermat often used the margins of texts to record his latest discoveries. In

1670, Fermat's son, CleÂment-Samuel, published a reprint of Bachet's

Diophantus together with his father's marginal notes and an essay by the

Jesuit, Jacques de Billy, on Fermat's methods for solving certain types of

Diophantine-type equations. His most famous marginal note, the statement

of his `last' theorem, appears in his copy of Bachet's edition of the

Arithmetica. Fermat wrote to the effect that it was impossible to separate a

cube into two cubes, or a biquadratic into two biquadratics, or generally

any power except a square into two powers with the same exponent. Fermat

added that he had discovered a truly marvelous proof of this result;

however, the margin was not large enough to contain it. Fermat's Last

Theorem was `last' in the sense that it was the last major conjecture by

Fermat that remained unproven. Fermat's Last Theorem has proven to be a

veritable fountainhead of mathematical research and until recently its proof

eluded the greatest mathematicians. In `The Devil and Simon Flagg'

Arthur Porges relates a delightful tale in which the Devil attempts to prove

Fermat's Last Theorem.

The Swiss mathematician, Leonhard Euler [oiler], perused a copy of

Bachet's Diophantus with Fermat's notes and was intrigued by Fermat's

emphasis on integer, rather than rational, solutions. At the University of

Basel, Euler was a student of Johann Bernoulli. Bernoulli won the

mathematical prize offered by the Paris Academy twice. His son Daniel

Bernoulli won it ten times. Euler, who won the prize twelve times, began a

lifelong study of number theory at age 18. Euler's papers are remarkably

readable. He has a good historical sense and often informs the reader of

things that have impressed him and of ideas that led him to his discoveries.

Even though over half of Euler's 866 publications were written when he

was blind, he laid the foundation of the theory of numbers as a valid branch

of mathematics. His works were still appearing in the Memoirs of the St

Petersburg Academy ®fty years after his death. It is estimated that he was

responsible for one-third of all the mathematical work published in Europe

from 1726 to 1800. He had a phenomenal memory and knew Vergil's

Aeneid by heart. At age 70, given any page number from the edition he
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owned as a youth, he could recall the top and bottom lines. In addition, he

kept a table of the ®rst six powers of the ®rst hundred positive integers in

his head.

Before proceeding further, it is important in what follows for the reader

to be able to distinguish between a conjecture and an open question. By a

conjecture we mean a statement which is thought to be true by many, but

has not been proven yet. By an open question we mean a statement for

which the evidence is not very convincing one way or the other. For

example, it was conjectured for many years that Fermat's Last Theorem

was true. It is an open question, however, whether 4!� 1 � 52,

5!� 1 � 112, and 7!� 1 � 712 are the only squares of the form n!� 1.

Exercises 1.1

1. An even number can be expressed as 2n and an odd number as 2n� 1,

where n is a natural number. Two natural numbers are said to be of the

same parity if they are either both even or both odd, otherwise they are

said to be of opposite parity. Given any two natural numbers of the

same parity, show that their sum and difference are even. Given two

numbers of opposite parity, show that their sum and difference are

odd.

2. Nicomachus generalized oblong numbers to rectangular numbers,

which are numbers of the form n(n� k), denoted by rn,k, where k > 1

and n . 1. Determine the ®rst ten rectangular numbers that are not

oblong.

3. Prove algebraically that the sum of two consecutive triangular numbers

is always a square number.

4. Show that 9tn � 1 [Fermat], 25tn � 3 [Euler], and 49tn � 6 [Euler] are

triangular.

5. Show that the difference between the squares of any two consecutive

triangular numbers is always a cube.

6. In 1991, S.P. Mohanty showed that there are exactly six triangular

numbers that are the product of three consecutive integers. For

example, t20 � 210 � 5 . 6 . 7. Show that t608 is the product of three

consecutive positive integers.

7. Show that the product of any four consecutive natural numbers plus

one is square. That is, show that for any natural number n,

n(n� 1)(n� 2)(n� 3)� 1 � k2, for some natural number k.

8. The nth star number, denoted by �n, represents the sum of the nth

square number and four times the (nÿ 1)st triangular number, where
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�1 � 1. One geometric interpretation of star numbers is as points

arranged in a square with equilateral triangles on each side. For

example �2 is illustrated in Figure 1.12. Derive a general formula for

the nth star number.

9. Show that Gauss's discovery that every number is the sum of three or

fewer triangular numbers implies that every number of the form

8k � 3 can be expressed as the sum of three odd squares.

10. Verify Nicomachus's claim that the sum of the odd numbers on any

row in Figure 1.9 is a cube.

11. For any natural number n prove that

(a) s2n�1 � sn � sn�1 � 2on. [Nicomachus]

(b) s2n � onÿ1 � on � 2sn. [Nicomachus]

12. Show that sn � t nÿ1 � p5
n, for any natural number n. [Nicomachus]

13. Prove that p5
n � 3t nÿ1 � n, for any natural number n. [Nicomachus]

14. Show that every pentagonal number is one-third of a triangular num-

ber.

15. Find a positive integer n . 1 such that 12 � 22 � 32 � � � � � n2 is a

square number. [Ladies' Diary, 1792] This problem was posed by

Edouard Lucas in 1875 in Annales de MatheÂmatique Nouvelles. In

1918, G. N. Watson proved that the problem has a unique solution.

16. Prove the square of an odd multiple of 3 is the difference of two

triangular numbers, in particular show that for any natural number n,

[3(2n� 1)]2 � t9n�4 ÿ t3n�1.

17. Show that there are an in®nite number of triangular numbers that are

the sum of two triangular numbers by establishing the identity

t[n(n�3)�1]=2 � t n�1 � t n(n�3)=2.

18. Prove that t2mn�m � 4m2 tn � tm � mn, for any positive integers m

and n.

19. Paul Haggard and Bonnie Sadler de®ne the nth m-triangular number,

T m
n, by T m

n � n(n� 1) � � � (n� m� 1)=(m� 2). When m � 0, we

obtain the triangular numbers. Generate the ®rst ten T 1
n numbers.

Figure 1.12
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